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Preface

In many cases, the problems in the book require further exploration of the topics in detail as opposed

to simply plugging numbers into equations. Instructors may therefore want to review the solutions

before assigning problems. See the book’s web page http://www.elsevierdirect.com/9780123740922

for the current errata of the book, as well as this solutions manual. If you discover an error that

is not listed there, we would very much appreciate your letting us know about it. You can email

rajivramaswami@ieee.org, or kumar@tejasnetworks.com or galens@hawaii.edu.

Note that all equation and figure numbers used in this manual refer to those in the third edition

of the book.
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2
c h a p t e r

Propagation of Signals in

Optical Fiber

2.1 From Snell’s Law we have,

n0 sin θmax
0 = n1 sin θmax

1 .

Using the definition of θmax
0 from Figure 2.3, we have

n1 sin
(

π/2− θmax
1

)

= n2,

or,

n1 cos θmax
1 = n2,

or,

sin θmax
1 =

√

1−
n2

2

n2
1

.

Therefore,

n0 sin θmax
0 = n1

√

1− n2
2

n2
1

=
√

n2
1 − n2

2

which is (2.2).

2.2 From (2.2),

δT

L
= 1

c

n2
1

n2
1 = 10 ns/km.

Therefore,

n2
11 =

n2cδT

L
.
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2 Propagation of Signals in Optical Fiber

We have,

NA = n1
√

21 =
√

2n2cδT /L =
√

2× 1.45× 3× 105 × 10−8 = 0.093.

The maximum bit rate is given by

0.5
(

10 ns/km× 20 km
) = 2.5 Mb/s.

2.3 We have

∇ ×H = J +
∂D

∂t
.

Using J = 0 and taking the curl of both sides, we get

∇ ×∇ ×H = ∂(∇ ×D)

∂t
= ∂

∂t
ε0(∇ × E)+ ∂(∇ × P)

∂t
.

Here we have used the relation D = ε0E+ P. Using (2.13), this simplifies to

∇ ×∇ ×H = −ε0
∂2B

∂t2 +
∂(∇ × P)

∂t
.

Taking Fourier transforms, we have

∇ ×∇ × H̃ = ε0ω
2B̃ − iω(∇ × P̃ )

= ε0ω
2µ0H̃ − iωε0χ̃(∇ × Ẽ)

= ε0ω
2µ0H̃ − iωε0χ̃(iωµ0H̃ )

= ε0µ0ω
2(1+ χ̃)H̃ = ε0µ0ω

2n2(ω)H̃

= ω2n2

c2
H̃ .

Using ∇ × ∇ × H̃ = ∇(∇ · H̃ )− ∇2H̃ , we get

∇2H̃ + ω2n2

c2 H̃ = ∇(∇ · H̃ ) = 0, since ∇ · B = 0.

2.4 Using 2π
λ

a

√

n2
1 − n2

2 < 2.405,

λcutoff =
2πa

2.405

√

n2
1 − n2

1 ≈
2πa

2.405
n1
√

21.

For a = 4 µm and 1 = 0.003, λcutoff = 1.214 µm, assuming n1 = 1.5.

2.5 (a) We have

λcutoff =
2πa

2.405

√

n2
1 − n2

2.
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Using a = 4 µm, n2 = 1.45, and λcutoff = 1.2 µm yields

n1 =

√

(

2.405× 1.2

2× π × 4

)2

+ 1.452 = 1.45454.

Therefore 1.45 < n1 < 1.45454 for the fiber to be single moded for λ > 1.2 µm.

(b) We have

V = 2πa

λ

√

n2
1 − n2

2.

Using a = 4 µm, λ = 1.55 µm, n2 = 1.45 and V = 2.0, we have

n1 =

√

(

V λ

2πa

)2

+ n2
2 = 1.4552.

Using

b(V ) ≈
(

1.1428−
0.9960

V

)2

,

we obtain b(2.0) = 0.41576. We also have

b =
n2

eff − n2
2

n2
2 − n2

2

.

Therefore, we can calculate neff = 1.45218. Thus

β =
2πneff

λ
= 5.887 /µm.

2.6 The specified nominal value of a must satisfy

λcutoff <
2π(1.05a)

2.405
n1
√

2× 1.1× 0.005

for λcutoff = 1.2µm and n1 = 1.5. Thus the largest value that can be specified is

a = 1.2× 2.405

2π × 1.05× 1.5×
√

2× 1.1× 0.005
= 2.78 µm.

Note that we have used the property that λcutoff increases with increase in a or 1 so that the largest

possible values of a and 1 are used in calculating the cutoff wavelength.

2.7 We have

∂A

∂z
+ i

2
β2

∂2A

∂t2
= 0.

Taking Fourier transforms, we get

∂Ã

∂z
+ i

2
β2 (−iω)2Ã = 0, or,

∂Ã

∂z
− iβ2ω

2

2
Ã = 0.

Solving this for Ã(z, ω), we get

Ã(z, ω) = Ã(0, ω) exp

[

iβ2ω
2

2
z

]

.



4 Propagation of Signals in Optical Fiber

Note that

Ã(0, ω) =
∞
∫

−∞

A(0, t)eiωt dt =
∞
∫

−∞

A0e
−t2/2T 2

0 eiωtdt

= A0

∞
∫

−∞

e
− 1

2

(

t2

T 2
0
−2iωt+(iωT0)

2
)

e
1
2 (iωT0)2

dt

= A0e
−ω2T 2

0 /2

∞
∫

−∞

e
− 1

2

(

t
T0
−iωT0

)2

dt

= A0e
−ω2T 2

0 /2
√

2πT 2
0 .

Therefore,

Ã(z, ω) = A0T0
√

2πe−ω2T 2
0 /2 exp

(

i
iβ2ω

2

2
z

)

.

Using this, we obtain

A(z, t) =
1

2π

∞
∫

−∞

Ã(z, ω)e−iωt dω =
A0T0√

2π

∞
∫

−∞

e−
ω2T 2

0
2 e

iβ2ω2

2 z e−iωtdω

= A0T0√
2π

∞
∫

−∞

e
− 1

2

[

ω2(T 2
0 −iβ2z

)

+2iωt+ (it)2

T 2
0 −iβ2z

]

e−t2/2(T 2
0 −iβ2z) dω

= A0T0√
2π

∞
∫

−∞

e
− 1

2

(

√

ω2
(

T 2
0 −iβ0z

)

+ it√
T 2

0 −iβz

)2

e−t2/2(T 2
0 −iβ2z) dω

= A0T0√
2π

e
− t2

2(T 2
0 −iβ2z)

∫ ∞

−∞
e
− 1

2 (T 2
0 −iβ2z)

(

ω+ it

T 2
0 −iβ2z

)2

dω

= A0T0e
−t2/2(T 2

0 −iβ2z) 1
√

T 2
0 − iβ2z

.

Note that in the last step we used the formula given in the problem with

α = 1

T0 − iβ2z
= T0 + iβ2z

T 2
0 + β2

2z2
,

with

Re(α) =
T0

T 2
0 + β2

2z2
> 0.
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2.8 From (E.8), we derive (E.9) and (E.10) as discussed in Appendix E. (2.13) now follows from (E.10).

2.9 From (2.28), with κ = 0,

A(z, t) = A0T0
√

T 2
0 − iβ2z

exp

(

−1

2

(t − β2z)
2

(T 2
0 − iβ2z)

)

,

which is the envelope of a Gaussian pulse for all z. Letting t ′ = t = β1z (so that we choose a

reference frame moving with the pulse), we have

A(z, t ′) = A0T0
√

T 2
0 − iβ2z

exp

(

−1

2

t ′2

(T 2
0 − iβ2z)

)

=
A0T0

√

T 2
0 − iβ2z

exp

(

−
1

2

t ′2(T 2
0 + iβ2z)

T 4
0 + (β2z)2

)

.

The phase of this pulse is

ω0t
′ + β2zt

′2

2(T 4
0 + (β2z)2)

.

Hence the chirp factor is, comparing with (2.26),

κ =
β2zT

2
0

T 4
0 + (β2z)2

=
β2z/T 2

0

1+
(

β2z

T 2
0

)2
= sgn(β2)z/LD

1+
(

z
LD

)2
.

2.10 A Gaussian pulse is described by

A(t) = A0e
− 1

2 t2/T 2
0 .

Its rms width is given by

T rms =

√

√

√

√

∫∞
−∞ t2|A(t)|2 dt
∫∞
−∞ |A(t)|2 dt

.

We have

∫ ∞

−∞
|A(t)|2dt =

∫ ∞

−∞
A2

0e
−t2/T 2

dt =
√

2π
T0A

2
0√

2
= T0
√

πA2
0,

and

∫ ∞

−∞
t2|A(t)|2dt = A2

0

∫ ∞

−∞
t2e−t2/T 2

0 dt = A2
0

T0√
2

√
2π

T 2
0

2
.
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Therefore,

T rms =

√

T 2
0

2
=

T0√
2
.

2.11 From (2.13),

|Tz|
T0
=

√

√

√

√

(

1+ κβ2z

T 2
0

)2

+
(

β2z

T 2
0

)2

.

For positive κ and negative β2,

|Tz|
T0
=

√

(

1− κz

LD

)2

+
(

z

LD

)2

.

(a) Differentiating the equation above, the minimum pulse width occurs for z = zmin which

solves

−κ

(

1−
κz

LD

)

+
z

LD
= 0.

This yields

zmin =
κ

1+ κ2
LD.

For κ = 5,

zmin =
5

26
LD = 0.192LD.

(b) The pulse width equals that of an unchirped pulse if
(

1− κz

LD

)2

+
(

z

LD

)2

= 1+
(

z

LD

)2

,

that is, if

z = 2LD

κ
.

For κ = 5, we get z = 0.4LD.

2.12 We leave this to the reader to go through the algebra and verify.

2.13 For a first order soliton,

N2 = γP0

|β2|/T 2
0

= 1.

Using γ = 1 /W-km, β2 = 2 ps2/km, and P0 = 50 mW,

T0 =

√

|β2|
γP0
= 6.32 ps.

Recall that a soliton pulse is described by

sech

(

t

T0

)

= 2

e−t/T0 + et/T0
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(neglecting the phase and considering a reference frame moving with the pulse). The half width at

half maximum is given by the solution to

[

sech

(

t

T0

)]2

=
1

2
or sech

t

T0
=

1
√

2
.

Solving this yields t = T0 ln(
√

2+ 1). Therefore,

TFWHM = [2 ln(
√

2+ 1)] T0 = 1.763T0.

Using T0 = 6.32 ps, we get TFWHM = 11.15 ps. Therefore,

B <
1000

11.15
× 1

10
Gb/s = 8.97 Gb/s,

where we have used the condition that the bit period > 10× TFWHM .





3
c h a p t e r

Components

3.1 Using (3.1), we can write

(

Eo1

Eo2

)

= e−iβl

(

cos kl i sin kl

i sin kl cos kl

)(

Ei1

Ei2

)

.

Ei1

E’i1

Ei2

E’i2

Eo1
E’o1

Eo2
E’o2

Note that kl = π/4 for a 3–dB coupler. Using this and ignoring the common phase factor e−iβl ,

we get

(

Eo1

Eo2

)

= 1√
2

(

1 i

i 1

)(

Ei1

Ei2

)

.

The traversal around the loop introduces the same phase change in Eo1 and Eo2, which can be

ignored. Thus E′i1 = Eo2 and E′i2 = Eo1.

The directional coupler is a reciprocal device. Therefore, the transfer function is the same if the

inputs and outputs are interchanged. Thus

(

E′o1
E′o2

)

= 1√
2

(

1 i

i 1

)(

E′i1
E′i2

)

= 1

2

(

1 i

i 1

)(

i 1
1 i

)(

Ei1

Ei2

)

= 1

2

(

2i 0
0 2i

)(

Ei1

Ei2

)

= i

(

Ei1

Ei2

)

.

Thus, E′o1 = i Ei1 and E′o2 = i Ei2. Therefore, the input field is reflected (with a phase shift) and

the device acts as a mirror.

9



10 Components

3.2 The scattering matrix is given by

S =





0 0 s13

0 0 s23

s31 s32 s33



 .

If the device satisfies the conservation of energy condition, then ST S∗ = I . In this case, we would

then have





0 0 s31

0 0 s32

s13 s23 s33









0 0 s∗13
0 0 s∗23

s∗31 s∗32 s∗33



 = I.

This implies that |s31|2 = 1 and |s32|2 = 1. Also s31s
∗
32 = 0, which implies that either s31 = 0

or s32 = 0, both of which would contradict the previous condition. Therefore the device cannot

satisfy the conservation of energy condition.

3.3 We have

ST S∗ =
(

s11 0
s12 s22

)(

s∗11 s∗12
0 s∗22

)

.

Assume that ST S∗ = I . Then |s11|2 = 1 and s11s
∗
12 = 0. If s12 6= 0, that is, power is transferred

from port 1 to port 2, s11 = 0, which is a contradiction.

3.4 We assume the pitch of the grating, a, is small compared to the distance from the source or imaging

plane to the grating plane. Thus the rays from A to both the slits can be taken to be approximately

parallel. The same goes for the rays from both the slits to C. Then the difference in the path lengths

ADC and ABC is

ED − BF ≈ a sin θi − a sin θd

= a[sin θi − sin θd ].

qi

qi

qd

qd

a
F

A

B

C

D

E
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3.5 The grating equation is:

d(sin θi + sin θd) = Nλ

where θi and θd are measured with respect to the vertical axis in Figure 3.11. (The blazing angle α

is also measured with respect to the same axis.) d is the periodicity of the grating (in the horizontal

axis in Figure 3.11).

The derivation is similar to that of the transmission grating in the text (Figure 3.10): The

path length difference between rays incident on successive slits is d sin θi and that between rays

diffracted from successive slits is d sin θd . The path length differences add (rather than subtract as

in Figure 3.10) due to the reflective nature of the grating and the way the angles are measured.

However, the maximum energy is not in the zeroth order but in the order corresponding to

ordinary (specular) reflection, namely, the order which satisfies θd − α = θi + α. For normal

incidence, θi = 0 and the maixmum energy occurs in the order at the angle θd = 2α.

3.6 Assume the slits are located at ±d/2, ±3d/2, . . . ,±(N − 1)d/2 and N is even. Then, the diffracting

aperture can be described by

f (y) = 1

N

N−1
∑

k=1,3,...

(δ(y − kd/2)+ δ(y + kd/2)) .

From (3.11), the amplitude distribution of the diffraction pattern is

A(θ) = A(0)

N

N−1
∑

k=1,3,...

(exp−2πi sin θkd/2λ+ exp 2πi sin θkd/2λ)

= A(0)

N

sin 2π sin θ
λ

Nd
2

sin 2π sin θ
λ

d
2

A(θ) has maxima when θ satisfies d sin θ = mλ, for some integer m.

As N →∞, A(θ)→ A(0), if d sin θ = mλ, for some integer m, and A(θ)→ 0, otherwise. Thus,

in the limit of an infinite grating with narrow slits, we get narrow lines of equal amplitude in the

diffraction spectrum at the angles corresponding to each grating order.

3.7 The resonant frequencies correspond to the maxima of the transfer function

TFP (f ) =
1

1+
(

2
√

R
1−R

sin(2πf τ)
)2

which occur when sin(2πf τ) = 0 or 2πf τ = kπ , where k is an integer. If the resonant frequency

f0 corresponds to k0, then

f0 =
k0

2τ
,

and the separation between adjacent resonant frequencies is 1f = 1
2τ

, which is a constant.

3.8 We have waves that make 1 pass, 3 passes, 5 passes, . . . , through the cavity before leaving the

second mirror. Adding up the contributions by each of these waves, we get the amplitude of the
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output electric field as

E0 = (1− A− R)Eie
−iβl

∞
∑

k=0

(

R e−i2βl
)k

.

Note that

βl = 2πnl

λ
= f τ.

From the above, the field transfer function is given by

E0

Ei

= (1− A− R)e−iβl

1− Re−i2βl
.

The power transfer function TFP (λ) is

TFP (λ) =
∣

∣

∣

∣

E0

Ei

∣

∣

∣

∣

2

= (1− A− R)2

1+ R2 − 2R cos 2βl
.

Writing cos 2βl = 1− 2 sin2 βl and simplifying, we get

TFP (λ) =

(

1− A
1−R

)2

1+
(

2
√

R
1−R

sin βl
)2

.

3.9 The transfer function of the Fabry-Perot filter is (ignoring absorption)

T (f ) = 1

1+
(

2
√

R
1−R

sin 2πf τ
)2

.

In Problem 3.7, we derived the free spectral range (FSR) to be 1
2τ

. We have T (f ) = 1
2 for f

satisfying 2
√

R
1−R

sin 2πf τ = 1. If f ′ is the smallest value of f for which this is satisfied, then the

full-width half maximum FWHM = 2f ′. For R close to 1, that is, 1− R � 1, f ′ satisfies

sin 2πf ′τ =
1− R

2
√

R
or 2πf ′τ ≈

1− R

2
√

R
.

Hence

f ′ = 1− R

2
√

R

1

2πτ
.

Therefore, the finesse F , which is the ratio FSR/FWHM, is given by,

F = FSR

FWHM
=
(

1

2τ

)/

2(1− R)

2πτ(2
√

R)

=
π
√

R

1− R
.
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3.10 The fraction of transmitted energy is

t =
∫∞
−∞ TFP (f ) df
∫∞
−∞ TFP (0) df

.

Since the transmission spectrum is periodic, we consider only one FSR to determine the fraction of

transmitted energy. We also assume the absorption is negligible so that A = 0. Denoting f τ = x,

the fraction of transmitted energy is given by

t =
∫ 0.5

−0.5

dx
(

1+
(

2
√

R
1−R

sin(2πx)
)2
)

=
1

√

1+ 4R
(1−R)2

= 1− R

1+ R

3.11 The FP filter with cavity length li , i = 1, 2, has a power transfer function,

Ti(f ) = 1
(

1+
(

2
√

R
1−R

sin(2πf τi)
)2
)

where τi = lin/c where n is the refractive index of the cavity, and c is the free space velocity of

light. The transfer function of the cascade is

T (f ) = T1(f )T2(f )

since reflections from the second cavity to the first, and vice versa, are neglected. The maxima of

T (f ) occur for these values of f which are maxima of both T1(f ) and T2(f ). Thus the FSR of the

cascade is

FSR = LCM(FSR1, FSR2)

where FSRi = c/2nli is the FSR of the filter with cavity length li and LCM denotes the least common

multiple. Since l1/l2 = k/m and k and m, are relatively prime integers,

FSR = LCM(FSR1, FSR2) = kFSR1 = mFSR2.

3.12
← l→

n1 n2 n3

Let 2πnl
λ
= x.

Z12 = η2

(

η3 cos x + iη2 sin x

η2 cos x + iη3 sin x

)

= η0

n2

(

n2 cos x + in3 sin x

n3 cos x + in2 sin x

)

.
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ρ =
Z12 − η1

Z12 + η1
=

(n2 cos x + in3 sin x)n1 − n2(n3 cos x + in2 sin x)

(n2 cos x + in3 sin x)n1 + n2(n3 cos x + in2 sin x)

=
i
(

n2
1 − n2

2

)

sin x

2n1nn cos x + i
(

n2
1 + n2

2

)

sin x
(using n1 = n3).

Therefore,

1− |ρ|2 = 1−
(n2

1 − n2
2)

2 sin2 x

4n2
1n

2
2 cos2 x + (n2

1 + n2
2)

2 sin2 x

=
(2n2

1)(2n2
2) sin2 x + 4n2

1n
2
2 cos2 x

4n2
1n

2
2 cos2 x + (n2

1 + n2
2)

2 sin2 x

= 1

cos2 x + (n2
1+n2

2)2

4n2
1n

2
2

sin2 x

= 1

1+ (n2
1−n2

2)2

4n2
1n

2
2

sin2 x

.

The transfer function of a Fabry-Perot filter with
√

R = n2−n1
n2+n1

is (using (3.10))

1

1+
[

2(n2−n1) (n2+n1)
(2n1)(2n2)

]2
sin2 x

= 1

1+ (n2
1−n2

2)
2

4n2
1n

2
2

sin2 x

which is identical to the expression above.

3.13 We only find the reflectivity at λ0. For the reflectivity as a function for λ, see M. Born and E. Wolf,

Principles of Optics, 6th edition, Pergamon Press, Oxford, 1980, Sec. 1.6.5, pp. 66–70.

We assume the surrounding medium is glass with refractive index nG and intrinsic impedance

ηG = η0/nG. Denote ηH = η0/nH and ηL = η0/nL. Then, by repeated application of (E.2), using

nH l/λ0 = nLl/λ0 = 1/4, we have,

ZLkG(λ0) = ηG,

ZHkLk (λ0) = η2
L/ηG,

ZLk−1Hk (λ0) = (ηH /ηL)2ηG,

...
...

ZL1H2(λ0) = (ηH /ηL)2k−2ηG,

ZH1L1(λ0) = (η2k
L /η2k−2

H ηG,

ZGH1(λ0) = (ηH /ηL)2kηG,

Thus the reflectivity of the stack at λ0 is

|ρ(λ0)|2 =
|ZGH1 − ηG|2

|ZGH1 + ηG|2
=
(

1− (nL/nH )2k

1+ (nL/nH )2k

)2

.

Since nL < nH , for large k, the reflectivity is almost unity. Thus a stack of alternating high and low
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refractive index dielectrics which are a quarter-wavelength thick at λ0, acts as a highly reflective

mirror at λ0.

3.14
Input 1 Output 1

Output 2Input 2

Path length, L L+ D

Path length, L

E (f)i1 E (f)o1 E (f)i1
/

E (f)o1
/

E (f)i1
/

E (f)o1
/

E (f)i2 E (f)o2

l l

Since the directional couplers are 3-dB couplers, from (3.1), with κl = (2k + 1)π/4, for some

integer k,

(

E′o1(f )

E′o2(f )

)

= e−iβl

√
2

(

1 i

i 1

)(

Ei1(f )

Ei2(f )

)

.

(

E′i1(f )

E′i2(f )

)

= e−iβL

(

1
e−iβ1L

)(

E′o1(f )

E′o2(f )

)

.

(

Eo1(f )

Eo2(f )

)

= e−iβl

√
2

(

1 i

i 1

)(

E′i1(f )

E′i2(f )

)

.

Muliplying the above transfer functions,

(

Eo1(f )

Eo2(f )

)

= e−2iβl

2

(

1− e−iβ1L i + ie−iβ1L

i + ie−iβ1L −1+ e−iβ1L

)(

Ei1(f )

Ei2(f )

)

.

If only one input, say input 1, is active, then Ei2(f ) = 0 and

(

Eo1(f )

Eo2(f )

)

= e−2iβl

2

(

1− e−iβ1L

i + ie−iβ1L

)

Ei1(f ).

The power transfer function is

(

|Eo1(f )|2/|Ei1(f )|2
|Eo2(f )|2/|Ei1(f )|2

)

=
1

4

(

(1− cos β1L)2 + sin2 β1L

(1+ cos β1L)2 + sin2 β1L

)

= 1

2

(

1− cos β1L

1+ cos β1L

)

=
(

sin2 β1L/2
cos2 β1L/2

)

.

3.15 (a)

DL1

DL2

DL2

DL3

DL3

DL3

DL3

…

…

…

…
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Assume that the frequencies are spaced at f0 + i1f , where i = 0, 1, . . . , n − 1. Let

n = 2k. Choose neff and 1L1 such that 2πf0neff1L1/c = kπ , for some integer k, and

2πneff1f1L1/c = π . Then the top output of the first stage contains the frequencies

f0 + 1f , f0 + 31f , f0 + 51f , . . ., and the bottom output f0, f0 + 21f , f0 + 41f , . . ..

Choose 1L2 = 1L1/2, . . ., 1Lk = 1L1/2k−1.

The choice of 1Lk only determines the periodicity of the filter. The absolute set of

frequencies must be chosen by appropriately varying neff. The neff for the filters in each

stage must be different in order to accomplish this. For example, in the second stage, the

top filter must satisfy 2π(f0 + 1f )neff1L1/c = kπ , for some integer k, and the bottom

filter must satisfy 2πf0neff1L1/c = kπ , for some integer k. However, the neff differences

are slight if 1f � f0 which is usually the case. Slight changes in neff can be effected by

heating or by applying a voltage (electro-optic effect).

(b) If only one frequency is required, retain only the k MZIs that the desired frequency passes

through, in the above construction.

3.16

( , )x y0 0
( , )x  y

(0, 0)

q f

Arrayed waveguide

Input waveguide

Rowland circle

Grating circle

R

Let R be the diameter of the Rowland Circle. Then,

x0 = R cos θ cos θ = R cos2 θ,

y0 = R cos θ sin θ,

y = R sin φ ≈ Rφ (for small φ),

x = R(1 − cos φ) = 2R sin2 (φ/2) ≈ 2R(φ/2)2 (for small φ)

≈ y2/2R.
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Therefore,

(x0 − x)2 + (y0 − y)2 = (x2
0 + y2

0)+ x2 + y2 − 2xx0 − 2yy0

= R2 cos2 θ + y2 − y2 cos2 θ − 2yR cos θ sin θ (assuming x2 � y2)

= (R cos θ − y sin θ)2.

(The assumption x2 � y2 amounts to assuming that R is much larger than the length of the arc

on which the arrayed waveguides are located.) Therefore, the distance from (x0, y0) to (x, y) =
R cos θ − y sin θ . If input waveguide i is at an angle θi to the central arrayed waveguide and two

successive arrayed waveguides are spaced apart vertically by d, the difference in the distances from

input waveguide i to these arrayed waveguides is

(R cos θi − y sin θi)− (R cos θi − (y + d) sin θi) = d sin θi .

Using the notation in the book, d in
i = R cos θi and δin

i = d sin θi .

3.17 If

n1δ
in
i + n21L+ n1δ

out
j = pλ = pc

f
= (p + 1)c

f ′
,

then FSR = f ′ − f (one period of the transfer function). Therefore,

FSR = (p + 1)c

n1δ
in
i + n21L+ n1δ

out
j

− pc

n1δ
in
i + n21L+ n1δ

out
j

= c

n1δ
in
i + n21L+ n1δ

out
j

.

Using the result of Problem 3.13, δin
i = d sin θi and δout

j = d sin θj , where d is the vertical spacing

between the arrayed waveguides, θi is the angular separation of input waveguide i and the central

arrayed waveguide, and θj is the angular separation of output waveguide j and the central arrayed

waveguide. Therefore,

FSR = c

n1d sin θi + n21L+ n1d sin θj

.

If d � 1L,

FSR ≈ c

n21L
.

3.18 Consider an N×N static router of the type shown in Figure 3.22. Using the result of Problem 3.13,

from input i, the wavelengths satisfying

n1d sin θi + n21L+ n1d sin θj = pλ

for some integer p are transferred to output j .
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We assume that the angular separation between successive input and output waveguides is 1θ .

Then we take

θi = i1θ, θj = j1θ, i, j = −(N − 1)

2
,
−(N − 3)

2
, · · · ,−1.0, 1, · · ·

(

N − 1

2

)

.

Here we have assumed that N is odd for simplicity. Thus the inputs and outputs are numbered

from −(N−1)
2 to (N+1)

2 .

Let λ00 be the wavelength that is transfered from input 0 to output 0. Thus λ0 satisfies

pλ00 = n21L. The wavelength λij that is transferred from input i to output j satisfies, assuming

the θi and θj are small,

n1d(i + j)1θ + n21L = pλij .

-2

-1

0

1

2

-2

-1

0

1

2
4

-4 = 1

-3 = 2

0 = 5

By renumbering the wavelengths, the static router can be assumed to use wavelength λ(i+j) mod N

to connect input i to output j . The figure above shows the renumbering for N = 5. Thus if

(i+ j) < 0, the wavelength used is λi+j+N . For example, input −2 uses wavelength−2− 2+ 5 = 1
to connect to output −2. Thus 1θ must satisfy

n1d(i + j)1θ + n21L = pλij and

n1d(i + j + N)1θ + n21L = (p + 1) λij .

Therefore,

n1dN1θ = λij .

When the FSR is independent of the input and output waveguides, n1d(i + j)1θ � n21L and

pλij ≈ n21L, for all i, j . If fij = c/λij and fij + 1f = c/λi+1,j are adjacent frequencies, using

this approximation,

1f =
pc

(n21L)2 n1d1θ

= pc

(n21L)2

λij

N

=
pλij c

N(n21L)2

= c

N(n21L)
(using pλij ≈ n21L)
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=
FSR

N
.

Thus the N frequencies must be chosen to be equally spaced within an FSR.

3.19 We choose the FSR as 1600 GHz which is the minimum possible value. Since FSR = c/n21L,

assuming n2 = 1.5, 1L = 125 µm is the path length difference between successive arrayed waveg-

uides.

If the center wavelength is denoted by λ0, n21L = pλ0 for some integer p, called the diffraction

order. Thus pλ0 = c/FSR = 187.5 µm. Choosing p = 120, λ0 = 1.5625 µm. From Problem 3.15,

the spacing between successive frequencies is

1f = pc

(n21L)2
n1d1θ.

Using the values 1f = 100 GHz, p = 120, 1L = 125 µm, and n1 = n2 = 1.5, d1θ = 1fpλ2
0/cn1 =

0.0651 µm. Assuming the vertical spacing between successive arrayed waveguides, d, is chosen to

be 25 µm, 1θ = 2.6× 10−3 radians. If the spacing between successive successive input or output

waveguides is 1x = 1θ/R = 25 µm, we get R = 9.6 mm for the diameter of the Rowland circle.

3.20 The transfer function of the AOTF is

T (1λ) =
sin2

(

(π/2)
√

1+ (21λ/1)2
)

1+ (21λ/1)2
.

Numerically solving

T (1λ)/T (0) = 0.5

yields

1λ ≈ 0.391.

Hence the FWHM bandwidth of the filter is

≈ 0.781 ≈ 0.8λ2
0/l1n.

3.21 Recall that a polarizer is a 2-input, 2-output device that works as follows. From input 1, the light

energy in the TE mode is delivered to output 1, and the light energy in the TM mode is delivered

to output 2. Similarly, from input 2, the light energy in the TE mode is delivered to output 2, and

the light energy in the TM mode is delivered to output 1. Thus the input polarizer delivers the

energy in the TE mode at all wavelengths from input 1, and the TM mode at all wavelengths from

input 2, to the upper arm of the AOTF. Similarly, the input polarizer delivers the energy in the

TM mode at all wavelengths from input 1, and the TE mode at all wavelengths from input 2, to

the lower arm of the AOTF. For the wavelength satisfying the Bragg condition, in the two arms of

the polarization-independent AOTF, the light energy undergoes mode conversion, from TE to TM,

and vice versa. The output polarizer combines the energy in the TE mode from the upper arm, and

the TM mode from the lower arm, and delivers it to output 1. Similarly, it combines the energy in
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the TM mode from the upper arm, and the TE mode from the lower arm, and delivers it to output

2. Thus all the energy at all the wavelengths, except the one satisfying the Bragg wavelength, are

delivered from input 1 to output 1, and input 2 to output 2. Since the energy from the signal at

the Bragg wavelength undergoes mode conversion in the two arms of the AOTF, this wavelength

is combined by the output polarizer into the “other” output, that is, the signal from input 1 is

delivered to output 2, and the signal from input 2 is delivered to output 1. Thus the wavelength

satisfying the Bragg condition is exchanged between the two ports.

Multiple wavelengths can be exchanged by launching multiple acoustic waves simultaneously,

and the AOTF acts as a 2-input, 2-output wavelength router.

3.22 λ0 = 1.55 µm. We take 1n = 0.07. From the solution of Problem 3.17, for a FWHM of 1 nm,

l = 0.8× 1.552

10−3 × 0.07
µm ≈ 27.5 mm.

3.23 From the given specifications, we require a free-spectral range (FSR) of ≥ 1600 GHz. For a

FP filter, the FSR is given by 1/2τ . Thus τ ≤ 1/3200 ns. Take τ = 1/3200 ns. We assume

the absorption loss A = 0 and use (3.10) for the power transfer function of the FP filter.

For a 1-dB bandwidth ≥ 2 GHz, TFP (1) ≥ 10−0.1 = 0.794. Solving for R using (3.10),

we get, R ≤ 0.992312, implying the finesse of the filter should be ≤ π
√

R/(1 − R) ≈ 407.

For a crosstalk suppression of 30 dB from each adjacent channel which is 100 GHz away,

we must have, TFP (100) ≤ 10−3 = 0.001. Solving for R using (3.10) yields R ≥ 0.987652,

or a finesse ≥ 253. Thus, to satisfy, the given passband and crosstalk requirements, the

reflectivity R must be chosen in the range (0.988, 0.992), for example, 0.99.

When the center frequencies are allowed to shift by±20 GHz from their nominal values,

and the filter is not tunable, it is impossible to satisfy the crosstalk suppresion requirement

of 30 dB. To see this note that we must have
TFP (80)

TFP (20)
≤ 10−3 = 0.001.

The ratio TFP (80)/TFP (20) decreases monotonically with increasing R; however it is

bounded below by a value of 0.0625. To see this approximate sin[2πf τ ] ≈ 2πf τ ,

since τ is small, so that the FP transfer function is of the form (1 + x2f 2)−1 where

x = 2
√

R/(1− R)2πτ . Thus
TFP (80)

TFP (20)
= 1+ 400x2

1+ 6400x2

which is a monotonically decreasing function of x2 bounded below by 400/6400 = 0.0625.

If the FP filter is tunable, which is the case in some networks, for example, the broadcast-

and-select Rainbow network of Chapter 7, then a crosstalk suppression of 30 dB under a

center wavelength drift of ±20 GHz translates to a crosstalk suppression of 30 dB from

a channel which is 60 GHz away since the desired channel and the adjacent channel can

drift by 20 GHz in opposite directions. Proceeding as above, this yields R ≥ 0.992573, or a

finesse ≥ 421. Since the requirement of a 1-dB passband of 2 GHz yields R ≤ 0.992312, or

a finesse ≤ 407, the two requirements cannot be satisfied simultaneousy. However, a filter

with a finesse in the range 410–420, nearly satisfies both requirements.
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For an n-stage Mach-Zehnder interferometer, the transfer function is given by,

TMZ(f ) =
n
∏

k=1

cos2(2k−1πf/FSR).

where πf/FSR = β1L/2 = πneff1L/λ, or FSR = c/neff1L. The minimum required

FSR is 1600 GHz. If we choose this FSR, and n = 4, the nulls in the tranfer function

are 100 GHz apart, which is the nominal interchannel spacing. We assume a 4-stage filter

so that the crosstalk suppression can be made very large, in the absence of frequency

drifts. For an FSR of 1600 GHz, neff1L/c = 1/1600 ns. For neff = 1.5, this yields,

1L = 0.2/1600 m = 125 µm for the path length difference of the first stage. The 2nd, 3rd

and 4th stages have path length differences of 250, 500 and 1000 µm, respectively.

At 1 GHz away from the center frequnecy, the transfer function is TMZ(1) = 0.999672 so

that the requirement of a 1-dB bandwidth larger than 2 GHz is easily satisfied. The null at

100 GHz is very sharp since TMZ(90) = 0.012 and TMZ(110) = 0.008. This already suggests

that the filter design may not be possible in the presence of a frequency drift of ±20 GHz

which is indeed the case. To see this note that increasing the FSR will make the crosstalk

suppression worse since, relative to the FSR, the interchannel spacing will be smaller. So

we use the minimum FSR of 1600 GHz. For this FSR, if we use 6 stages, the nulls occur

25 GHz apart. We cannot use more stages since the center frequency of a channel may then

drift into a null of the transfer function. For 6 stages or fewer, numerical calculations of

TMZ(20)/TMZ(f ′) where f ′ ∈ [80, 120] GHz show that a crosstalk suppression of 30 dB is

not achievable.

If the filter is tunable, a crosstalk suppression of over 30 dB can be achieved by using an

8-stage filter with an FSR of 1600 GHz. The worst-case crosstalk of 30.3 dB occurs when

the adjacent channel is 65.565 GHz away from the desired channel. The 8-stage filter also

satisfies the 2 GHz 1-dB bandwidth requirement.

In the case of the AOTF, the transfer function nulls are not spaced equally apart in fre-

quency, as in the case of the multistage MZI. So we cannot design the filter with a low

crosstalk suppression (in the absence of frequency drifts) by making the transfer function

nulls coincide with the channel positions. (Far away from the main lobe, the nulls are

approximately equally spaced in wavelength.) Since the first side lobe is less than 10 dB

below the main lobe, this suggests that for a filter meeting the specified requirements, the

adjacent channel must occur after several transfer function nulls. This is indeed the case

and a filter can be designed (in the absence of frequency drifts) as follows.

We note that

TAOT F (λ) =
sin2

(

(π/2)
√

1+ (21λ/1)2
)

1+ (21λ/1)2
. ≤ 1/(1+ (21λ/1)2) = T ′(λ).

In the 1.55 µm band, a spacing of 100 GHz ≈ 0.8 nm. Solving T ′(0.8) = 10−3 yields,

0.8/1 = 15.8035 or 1 = λ2
0/l1n = 0.8/15.8. Assuming 1n = 0.07 and λ0 = 1.55 µm

yields l ≈ 68 cm. For an integrated optics AOTF, this is a highly impractical value of l,

which again illustrates the poor crosstalk suppression capabilities of the AOTF compared

to other structures. However this (impractical) filter does satisfy the 2 GHz 1-dB bandwidth

requirement.

In the presence of frequency drifts, similar problems arise as in the FP and MZI struc-

tures, and the filter design is impossible. In the tunable filter case, the crosstalk suppression
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of 30 dB must now occur for a worst-case spacing of only 60 GHz which makes the required

value of l even larger at 113 cm! In this case the 1-dB bandwidth is slightly less than the

required value of 2 GHz; the transfer function is 1.25 dB down at 1 GHz on either side of

the center frequency.

Note that none of these filters are capable of handling a variation of 20 GHz in the channel

positions. In practical applications, the passband shape is engineered to have a flatter top and

sharper skirts to meet this requirement.

3.24 (a) Structure of Figure 3.14(b):

The loss for a dropped channel = 1 dB (first pass) + 1 dB (second pass) = 2 dB.

The loss for an added channel = 13 dB (input coupling loss of 5% tap).

The loss for a passed-through channel = 1 dB (first pass) + 0.5 dB (grating loss) + 0.2 dB

(coupling loss) = 1.7 dB.

Power of a passed-through channel = −15 dBm− 1.7 dB = −16.7 dBm.

For the added channel to have the same power, it must be transmitted at = −16.7 dBm +
13 dB = −3.7 dBm.

(b) Structure of Figure 3.14(b) cascaded:

Dropped channel worst-case loss = 1.7 dB× 3 (three passes-through) +2 dB = 7.1 dB.

Dropped channel best-case loss = 1.7 dB× 0 (no passes-through) +2 dB = 2 dB.

Added channel worst-case loss = 13 dB+ 1.7 dB× 3 = 18.1 dB.

Added channel best-case loss = 13 dB+ 1.7 dB× 0 = 13 dB.

Pass-through channel worst-case and best-case loss = 1.7 dB× 4 = 6.8 dB.

(c) Structure of Figure 3.82:

For this structure, the best-case and worst-case losses are the same.

Dropped channel worst-case loss = 2 dB+ 6 dB (splitting loss) +1 dB (filter) = 9 dB.

Added channel worst-case loss = 6 dB (combining loss) +10 dB (input coupling loss)

= 16 dB.

Passed-through channel worst-case loss = 1 dB (circulator pass) +2 dB (grating pass)

+0.5 dB (output coupling loss) = 4.5 dB.

Comparing with the results of (b), we see that the structure of Figure 3.60 has a lower

worst-case loss for the added and passed-through channels. Moreover the loss is uniform.

(d) The costs of the two structures are compared in the following table.
Figure 3.14(b) Figure 3.60

cascaded

Fiber grating $2,000 $2,000

Circulators $12,000 $3,000

Filters – $4,000

Splitters/combiners – $200

Couplers $400 $100

Total $14,400 $9,300

Thus, from the cost viewpoint also, the structure of Figure 3.60 is better.

3.25 Conduction band electrons in a photodetector do not absorb incident photons since there are no

higher energy levels or band to which they can be excited.

3.26 (a) See Figure 3.34. To minimize ASE, pump in the forward direction. To prevent back
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reflections at the input add an isolator at the amplifier input.

(b) See Figure 3.35.

(c) 1532 nm corresponds to 195.82 THz. 1550 nm corresponds to 193.55 THz. The total

bandwidth available is therefore 2200 GHz. With 100 GHz spacing we can have 22 channels

within this band.

(d) The required energies are given by hf , where h is Planck’s constant and f is the frequency.

Using h = 6.63×10−34 J/Hz, the energy range required is 1.283×10−19 J to 1.298×10−19 J.

(e) This would be a two stage EDFA shown in Figure 3.37 with the loss element replaced by

the ADM.

(f) See Figure 3.82, with only two fiber Bragg gratings and a 2 × 1 combiner and splitter.

Note that there are multiple alternatives. Another alternative is to cascade two individual

add/drop units, one for each wavelength, each with a circulator and combiner. Another is

to cascade two individual drops first and combine the adds later.

(g) >From Section 3.3.3., the period of the grating is given by 3 = λ0/2neff . Using neff = 1.5,

we get the periods of the gratings corresponding to 1532 and 1532.8 nm being 510.667 nm

and 510.933 nm.

3.27 If a switch has a crosstalk suppression of 50 dB, it means that the input power from each other

input is 10−5 of the input power from the desired input. In a 4 × 4 switch, we have three other

(unwanted) inputs. In the worst-case, we get each of them at the desired output with a relative

attenuation of 10−5. Thus the crosstalk suppression is −10 log10 3× 10−5 ≈ 45 dB.

If the overall crosstalk suppression should be 40 dB, we need 45 dB crosstalk suppression in

each 2× 2 switch.

3.28 First, the resulting filter will have a peak whenever mf1 = nf2, where m and n are integers. Since

lcm(f1, f2) is a multiple of both f1 and f2, the resulting filter has a peak at qlcm(f1, f2), where q is

an integer. We now prove that there cannot be a peak between qlcm(f1, f2) and (q+1)lcm(f1, f2).

Pick the two integers M and N such that Mf1 = Nf2 = qlcm(f1, f2). The next peak will then

occur at the smallest values of two integers i and j such that

(M + i)f1 = (N + j)f2,

or

if1 = jf2.

By definition the smallest values of i and j for which this is satisfied is lcm(f1, f2). Therefore the

resulting filter is periodic with period lcm(f1, f2).

3.29 Say we have to establish a connection from an idle input of a first stage switch X to an idle output of

the third stage switch Y . To do so we have to have a fanout such that we can always find a middle

stage switch. Note that since at most m− 1 outputs of the switch X can be busy. Likewise, at most

m− 1 inputs of the switch Y can be busy. To establish a connection we need to find a middle stage

switch to which one of these free ports in switch X and switch Y are connected. In the worst case, the

busy outputs of switch X are connected to m− 1 separate mid-stage switches and the busy outputs

of switch Y are connected to m − 1 other separate mid-stage switches. To find a free mid-stage

switch, there we must have the number of mid-stage switches, p ≥ (m− 1)+ (m− 1) = 2m− 1.





4
c h a p t e r

Modulation and Demodulation

4.1 (a) 1111101111101001000000.

(b) 0111110101111100011 is decoded as 011111 1011111 0011 .

The algorithm used by the decoder is to omit the zero following a sequence of five 1s.

4.2 (a)

D7
D6 D5 D4 D3 D2 D1

Din

Dout

+

+

Scrambled data out

Data in

The bits are assumed to be labelled as in the figure above. The operation of the shift register

is shown in the table below.
Din Dout D7 D6 D5 D4 D3 D2 D1

= Din +D1

– – 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 1

1 0 0 0 1 1 1 1 1

1 0 0 0 0 1 1 1 1

1 0 0 0 0 0 1 1 1

1 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 1

1 0 1 0 0 0 0 0 0
...

...
...

The scrambled output is 00000001111000000001.
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(b) The C program for solving this problem is given below.

#include <stdio.h>

#include <stdlib.h>

#define MAXBITS 10000000

main()

{

int D[8], Din, Dout;

int i, j, temp, prevbit, seq[2], maxseq[2];

/* Initialize random number generator */

srandom(1);

/* Intialize shift register contents */

for(j = 1; j <= 7; ++j) D[j] = 1;

seq[0] = seq[1] = 0;

maxseq[0] = maxseq[1] = 0;

printf(" k Sequence Max run\n");

printf(" length of k’s\n");

prevbit = 2;

for(i = 1; i <= MAXBITS; ++i)

{

Din = random()&01; /* Din is a random bit */

Dout = DinˆD[1];

temp = D[1]ˆD[2];

for(j = 1; j < 7; ++j) D[j] = D[j+1];

D[7] = temp; /* Shifting of bits */

if(Dout == prevbit) ++seq[Dout]; /* run continues */

else /* run has ended */

{

seq[Dout] = 1;

if(seq[Doutˆ1] > maxseq[Doutˆ1])

{

/* new maximum run length found */

maxseq[Doutˆ1] = seq[Doutˆ1];

printf(" %1d %10d %10d\n",

Doutˆ1,i,maxseq[Doutˆ1]);

}

}

prevbit = Dout;

}

}
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For one sample run, the observed output was as follows.

k Sequence Max run

length of k’s

0 2 1

1 3 1

0 7 2

1 10 3

1 18 7

0 34 3

0 43 4

0 83 6

0 153 11

1 348 8

1 635 9

1 1940 12

0 3682 13

1 4664 14

0 6631 14

0 49942 16

1 117432 18

1 1008625 19

1 1200797 20

0 1301644 20

0 4299910 21

0 7597862 22
This is plotted in the figure below.
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4.3

d(nT ) = 10101011010111100001

x(nT ) = 11001101100101000001
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x(nT − T ) = 011001101100101000001

y(nT ) = x(nT )+ x(nT − T )

= 12101211210111100001

To get x(nT ) from d(nT ) we assume d(nT ) is preceded by 0’s. Note that y(nT ) mod 2 = d(nT ) as

expected.

Formally, the differential encoding x(nT ) of d(nT ) is obtained using

x(nT ) = [x(nT − T )+ d(nT )] mod 2 =
∞
∑

i=0

d(nT − iT ) mod 2.

Thus, x(nT ) is the running sum, modulo 2, of d(nT ).

Therefore,

y(nT ) = x(nT )+ x(nT − T ) =
∞
∑

i=0

d(nT − iT ) mod 2+
∞
∑

i=1

d(nT − iT ) mod 2.

Thus, y(nT ) = 1, if d(nT ) = 1, and y(nT ) = 2x(nT − T ) = 2
(
∑∞

i=1 d(nT − iT ) mod 2
)

, if

d(nT ) = 0.

4.4

SNR = I
2

σ 2
shot + σ 2

thermal

= (GmRP)2

2eG2
m FA(Gm)RPBe + 4kBT

RL
FnBe

.

To optimize the SNR, we set

∂SNR
∂Gm

= 0,

or

(

∂I
2

∂Gm

)

(

σ 2
shot + σ 2

thermal

)

−
(

∂σ 2
shot

∂Gm

)

I
2 = 0

or
(

2eG2
mFA(Gm)RPBe + σ 2

thermal

)

−Gme(x + 2)Gx+1
m RPBe = 0,

where we have used FA(Gm) = Gx
m. Solving this equation yields

Gm =
(

σ 2
thermal

eRPBex

)
1

x+2

=
(

4kBT Fn

eRLRPx

)
1

x+2

.

4.5 (a)

e
P

F
a b c

We have

F = SNRb

SNRc

.

The signal-to-noise ratios at points a and b, respectively, are

SNRa =
(RP)2

2RePBe

and SNRb =
(RP(1 − ε))2

2ReP (1− ε)Be

.
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Therefore
SNRa

SNRb

= 1

1− ε
.

The overall noise figure is given by
SNRa

SNRc

= F

1− ε
.

(b)

e

F
a b c

We have

F = SNRa

SNRb

.

SNRb =
RP

4R2Pnsp hfc Be

and

SNRc =
RP(1 − ε)

4R2P(1− ε)nsp hfc Be

= SNRb.

Therefore the overall noise figure is F .

Note that this is true only if the signal-spontaneous noise power at c is much larger than

the receiver thermal noise power, which will be the case for power levels that are several

dB higher than the receiver sensitivity.

(c)

F1

F2

G1 G2

Note that F1 ≈ 2nsp1 and F2 ≈ 2nsp2. Therefore, at the output, the noise power is given by

F1hν(G1 − 1)G2B0 + F2hν(G2 − 1)B0 = [F1(G1 − 1)G2 + F2(G2 − 1)] hνB0.

Consider an equivalent amplifier with gain G1G2. Its noise power is

Fhν(G1G2 − 1)B0.

Comparing this with the equation above, we get

F = F1(G1 − 1)G2 + F2(G2 − 1)

G1G2 − 1
.

Assuming G1,G2 � 1, we have

F = F1 +
F2

G1
.

(d)

F1

F2

G1 G2e

This is similar to 4.4(c). The noise power at the output is given by

[F1(G1 − 1)(1− ε)G2 + F2(G2 − 1)]hνB0.

The equivalent amplifier has gain G1G2(1− ε) and its noise power is

Fhν(G1G2(1− ε)− 1)B0.
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Assuming G1(1− ε)� 1 and G2 � 1, we get

F = F1 +
F2

G1(1− ε)
.

4.6 We have

BER = 1

2
P [1|0]+ 1

2
[1|0] = 1

2
Q

(

I1 − Ith

σ1

)

+ 1

2
Q

(

Ith − I0

σ0

)

.

Using

Ith =
σ0I1 + σ1I0

σ0 + σ1

from (4.12), we get

I1 − Ith =
σ1(I1 − I0)

σ0 + σ1

and

Ith − I0 =
σ0(I1 − I0)

σ0 + σ1
.

Therefore, we have

BER = 1

2
Q

(

I1 − I0

σ0 + σ1

)

+ 1

2
Q

(

I1 − I0

σ0 + σ1

)

= Q

(

I1 − I0

σ0 + σ1

)

.

4.7

BER = 1

2
Q

(

m1 − Td

σ1

)

+ 1

2
Q

(

Td −m0

σ0

)

,

From this expression, for large |Td |, BER→ 1/2, so that an optimum Td that minimizes the BER

exists. Setting ∂BER/∂Td = 0, we get,

1

σ1
e−(m1−Td )2/2σ 2

1 = 1

σ0
e−(Td−m0)

2/2σ 2
0

or

(Td −m0)
2

2σ 2
0

− (m1 − Td)2

2σ 2
1

= ln σ1/σ0

which can be written as

(σ 2
1 − σ 2

0 )T 2
d + 2(m1σ

2
0 −m0σ

2
1 )Td +m2

0σ
2
1 −m2

1σ
2
0 − 2σ 2

0 σ 2
1 ln σ1/σ0 = 0.

Solving this quadratic equation for Td , we get (4.21).

4.8 From (4.15), the receiver sensitivity

P rec =
(σ0 + σ1)

2GmR .
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Neglecting shot noise, we have σ 2
0 = σ 2

1 = σ 2
thermal and Gm = 1 for a pin receiver. Therefore,

P̄sens =
σthermalγR .

The power per 1 bit P1 = 2P rec. For an error rate of 10−12, γ = 7. Using σthermal = 1.656×10−22 B,

we get

P1 =
2×
√

1.656× 10−22B × 7

1.25
= 1.44× 10−10

√
B W

At B = 100 Mb/s, P1 = 1.44 µW and M = 1.12 × 105 photons per 1 bit. At B = 1 Gb/s,

P1 = 4.56 µW and M = 35.5× 103 photons per 1 bit.

4.9 (a) P̄sens =
(σ0 + σ1)γ

2GmR or

(

P̄sens −
σ0γ

2GmR)2

=
(

σ1γ

2GmR)2

.

Using σ 2
shot = 4eG2

mFA(Gm)R P̄sensBe, σ 2
0 = σ 2

thermal and σ 2
1 = σ 2

thermal+σ 2
shot in the equation

above, we get

P̄sens =
γR (

σthermal

Gm

+ γ eFA(Gm)Be

)

.

(b) To obtain the optimum value of Gm, we set
∂P̄sens

∂Gm

= 0⇒ −σthermal

G2
m

+ γ eBe
∂FA

∂Gm

= 0.

Note that

FA(Gm) = kAGm + (1− kA)(2− 1/Gm).

So we have
∂FA

∂Gm

= kA +
(1− kA)

G2
m

.

Substituting this in the equation above, we obtain

γ eBe

[

kA + (1−kA)

G2
m

]

− σthermal
G2

m
= 0

or (γ eBekA)G2
m = σthermal − (1− kA)γ eBe

or Gm =
√

σthermal
γ eBekA

− 1−kA

kA
.

(c) From the solution to (b), we have
σthermal

G
opt
m

= γ eBe

[

kA +
1− kA

(G
opt
m )2

]

G
opt
m .

Therefore,

P̄sens =
γR [

γ eBeG
opt
m kA + γ eBekAG

opt
m + 2(1− kA)γ eBe

]

= γR [

2γ eBeG
opt
m kA + 2(1− kA)γ eBe

]

= 2γ 2eR Be

[

kAG
opt
m + 1− kA

]

.

4.10 We assume that I1 = RGP (using (4.6)), I0 = 0, σ1 = σsig-spont, and σ0 � σ1. With these

assumptions, (4.14) reduces to,

BER = Q

(

I1 − I0

σ0 + σ1

)

= Q

( RGP
√

4R2GPPn(G− 1)Be

)
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where we have used (4.9) for σ1 = σsig-spont. This simplifies to (4.18).

4.11
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The sensitivity is plotted in the figure above. We assume the amplifier gain is reasonably

large so that the thermal and shot noise terms can be neglected. So we consider only the

signal-spontaneous and spontaneous-spontaneous terms given by (4.9) and (4.10), respectively.

The receiver sensitivity is obtained by solving for P̄sens in (4.15), using both the terms for σ1 and

only the spontaneous-spontaneous term for σ0. The resulting expression which is plotted in the

figure above is

P̄sens = γ
eRFn

B

2

(

γ +
√

2Bo − B/2

B

)

where we have used the condition Be = B/2.

4.12 We assume the optical amplifier has a gain G = 30 dB; however the results are fairly insensitive to

the gain as we will see later.

Denote the received power at the input of the optical amplifier by P and the loss introduced by

the attenuator by L. Both the signal and the spontaneous emission from the optical amplifier are

attenuated by L. Thus the noise variances in (4.7)–(4.10) are modified with GP replaced by GPL

and Pn(G−1) replaced by Pn(G−1)L. We calculate the BER using (4.14) where we set P = 2P̄sens

for a ‘1’ bit, and P = 0 for a ‘0’ bit. We plot the BER versus the the signal power going into the

receiver namely, GPL, when L is varied, for four different values of P namely, −20,−30, −40, and

−50 dBm.
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When the power into the amplifier is high (P = −20 and −30 dBm), the attenuator needs to be

set to a high loss value to measure BERs in the range of 10−12 to 10−3. Due to the high attenuation,

the receiver is essentially thermal noise limited in this case and this is seen in the curves, where

the BER drops significantly as the power into the receiver is increased. For lower received signal

powers, such as P = −40 dBm, the attenuator is set to a low to moderate loss value, and in

this case, the receiver performance is dominated by the signal-spontaneous noise. For this case,

increasing the power into the receiver by varying the attenuator setting doesn’t have as much of an

impact on the BER as can be seen by the levelling off of the BER curve. The receiver performance

is fairly insensitive to the amplifier gain as can be seen in the figure below.
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Here we plot the BER versus the signal power going into the receiver for P = −30 dBm for

G = 20, 25, 30, and 35 dB. For G in the 20–30 dB range, the curves are very close to each other.

For G = 35 dB, the signal-spontaneous noise begins to dominate and the BER increases for the

same signal power into the receiver.

4.13 The OSNR is defined as the ratio of average signal power to the total noise power in both

polarization modes. Assuming that P is the average power, we can write

OSNR =
GP

PASE
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where PASE = 2Pn(G− 1)Bo is the total noise power in both polarization modes.

For a 1 bit, we can now rewrite (4.9) as

σ 2
sig-spont = 4R2G(2P)Pn(G− 1)Be = 4R2GPPASE

Be

Bo

,

and for both a 0 and 1 bit, (4.10) becomes

σ 2
spont−spont = 2R2[Pn(G− 1)]2(2Bo − Be)Be ≈ R2P 2

ASE
Be

Bo

.

Here we have assumed that 2Bo � Be, which is the case in most practical systems. Therefore we

have

γ =
R2GP

√

4R2GPPASE
Be

Bo
+R2P 2

ASE
Be

Bo
+
√R2P 2

ASE
Be

Bo

= 2RPASEOSNR
√

4R2OSNRP 2
ASE

Be

Bo
+R2P 2

ASE
Be

Bo
+
√R2P 2

ASE
Be

Bo

=
2OSNR

√

Bo

Be

1+
√

1+ 4OSNR
.

For large signal-to-noise ratios (4OSNR� 1), this can be expressed as

γ =

√

OSNR
Bo

Be

.

4.14 For a PSK homodyne receiver,

I1 = R(P + PLO + 2
√

PPLO),

I0 = R(P + PLO − 2
√

PPLO).

We have

σ 2
1 = 2eI1Be ≈ 2eRBePLO ,

σ 2
0 = 2eI1Be ≈ 2eRBePLO .

Therefore,

BER = Q

(

4R√PPLO

2
√

2eRBePLO

)

= Q

(

2

√ RP

2eBe

)

.
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Assuming Be = B/2, we get

BER = Q

(

2

√RP

eB

)

= Q(2
√

M),

where M is the number of photons per 1 bit. For a BER of 109, we want 2
√

M = 6 or M = 9
photons / 1 bit.

4.15 Let the signal field at the input be

Es =
√

2aP cos(2πfct)

and the local oscillator field at the input be

ELO =
√

2PLO cos(2πfct).

If we use a π
2 phase shift at the second input and output of the coupler, its scattering matrix becomes

1√
2

[

1 1
1 −1

]

.

Therefore, the fields going into the two detectors are

E1 = (Es + ELO)/
√

2, and

E2 = (Es − ELO)/
√

2.

The equivalent powers are

P1 =
1

2

(

E2
s + E2

LO + 2EsELO

)

= 1

2

(

aP + PLO + 2
√

aPPLO

)

, and

P2 = 1

2

(

aP + PLO − 2
√

aPPLO

)

.

The average difference current is given by

i = R(P1 − P2) =
1

2
R4
√

aPPLO = 2R√aPPLO .

On the other hand, the average noise power is the sum of the noise powers in the two arms and is

given by

σ 2 = 2eRP1Be × 2

= 2eRBePLO .
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The BER is given by (for OOK)

Q

(

2R√PPLO

2
√

2eRBePLO

)

= Q

(
√ RP

2eBe

)

,

which is the same as the expression derived in Section 4.4.7.

4.16 If the bits to be transmitted are 010111010111101111001110, the parity check bits are 11101000 so

that the transmitted sequence is 01011101011110111100111011101000.

If the received bits are 010111010111101111001110, the received parity bits are the last 8 bits,

namely, 11001110. Computing the BIP-8 on the first 24 bits yields 11101000. The number of

mismatches between the received parity checks and the computed parity checks is 3 and hence, we

conclude, that 3 bit-errors occurred.

4.17 The receiver makes an error provided that either all three bits get corrupted (probability p3) or two

of the three bits get corrupted (probability 3p2). Therefore probability of error = p3 + 3p2.
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c h a p t e r

Transmission System

Engineering

5.1 The output power after 10 km = −20 dBm and the power after 20 km = −23 dBm. This implies

that the loss due to 10 km of fiber is 3 dB, or that the fiber loss = 0.3 dB/km. If the output power

of the source is Pin dBm, we have

Pin − 3 dB (source-fiber coupling loss)

− 3 dB (fiber loss)

− 1 dB (fiber detection coupling loss)

= −20 dBm,

or Pin = −13 dBm = 50 µW.

5.2 (a)

Loss limit =
(

−3 dBm+ 30 dBm
)

0.25 dB/km
= 108 km.

Dispersion limit = 500 ps

17 ps/km-nm

1

1 nm
= 29.4 km.

Therefore, the longest link length is 29.4 km.

(b)

Loss limit = 0 dBm+ 30 dBm

0.5 dB/km
= 60 km.

The dispersion limit is infinite. Therefore the longest link length is 60 km.

(c)

SNR = (GmRPin)
2

2eG2
mFA(Gm)RPinBe + 4kBT

RL
FnBe

.

We have GmR = 8 A/W, Gm = 10 (hence R = 0.8 A/W), FA = 3.16 (5 dB), Fn = 2 (3 dB),

RL = 50 �, and SNR = 1000 (30 dB). Assume T = 300◦K. Substituting these values and

further assuming that Be = 500 MHz, we get

1000 =
64P 2

in

4.045× 10−8 Pin + 3.312× 10−13

37
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or

64P 2
in − 4.045× 10−5 Pin − 3.312× 10−10 = 0

or Pin = 2.613 µW = −25.8 dBm. Thus, the longest link length = 25.8/0.5 = 51.6 km.

(d) Now we have

SNR = (RPin)
2

2eRPinBe + 4kBT
RL

FnBe

.

Using R = 0.8 A/W, Fn = 3.16 (5 dB), RL = 300 �, Be = 500 MHz, T = 300◦K, and

SNR = 100 (20 dB), we get

100 =
0.64P 2

in

1.28× 10−10Pin + 8.72× 10−14
or

0.64P 2
in − 1.28× 10−8Pin − 8.72× 10−12 = 0

or Pin = 3.7 µW = −24.3 dBm. Thus the longest link length = 24.3/0.5 = 48.6 km.

5.3 (a) We use BL|D|1λ < 0.491 for a 2 dB penalty, since the source spectral width (10 nm) is

large compared to the bit rate.
B = 100 Mbps ⇒ L < 28.9 km.

= 1 Gbps ⇒ L < 2.89 km.

= 10 Gbps ⇒ L < 289 m.

(b) We use BL|D|1λ < 0.491 for B = 100 Mbps and 1 Gbps since the spectral width 1 nm ≈
120 GHz is large compared to the bit rate in these cases.

B = 100 Mbps ⇒ L < 2890 km.

= 1 Gbps ⇒ L < 289 km.

The same formula for B = 10 Gbps yields, L < 28.9 km. If we use the small spectral width

formula

Bλ

√

|D|L
2πc

< 0.491,

we get L < 111 km. The actual limit will be somewhere between the two.

(c) For B = 100 Mbps, the large spectral width formula applies and L < 28, 900 km.

For B = 1 Gbps the spectral width is comparable to the modulation bandwidth. The

large spectral width formula yields L < 2890 km, whereas the small spectral width formula

yields L < 11,100 km. The actual limit will be between these two.

For B = 10 Gbps, the small spectral width formula applies and yields L < 111 km.

5.4 We use the same reasoning as in Problem 5.3.

(a) B L <

100 Mbps 98.3 km

1 Gbps 9.83 km

10 Gbps 983 m

(b) B L <

100 Mbps 9830 km

1 Gbps 983 km

10 Gbps 98.3 km (377 km using small spectral width formula)
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(c) B L <

100 Mbps 98,300 km

1 Gbps 9830 km (37,700 km using small spectral width formula)

10 Gbps 377 km

5.5 (a) Left to the reader.

(b) Note that the effective index of the InGaAsP material used in the DFB laser is not specified. It

is approximately 3.5. Using this value, the period of the grating is given by 3 = λ0/2neff =
1310/3.5 = 374.3 nm.

(c) Note that NA is not defined in the book. Using (2.2), the NA is defined as

NA = sin θmax
0 =

√

n2
1 − n2

2

n0
.

The NA for this fiber is therefore 0.173, assuming n0 = 1, which corresponds to a critical

angle θmax
0 = 10 degrees.

(d) Using (2.3), the intermodal dispersion limited transmission length is given by

L =
1.49× 3× 108

2× 155.52× 106 × 1.52 × 0.01/1.5
= 96 m.

(e) Using a loss of 0.4 dB/km yields a total link loss of 0.04 dB.

(f) The received power P = −0.04 dBm = 0.9 mW. From Section 3.6.1, the photocurrent,

with wavelength expressed in microns, is given by

f racλ1.24P A/W = 1 mA.

(g) For the fiber to be single-moded at 1310 nm, from (2.12), we need the fiber core radius

a <
2.405λ

2π

√

n2
1 − n2

2

= 2.9 µm.

Therefore the core diameter needs to be smaller than 5.8 µm.

5.6 (a) Left to the reader.

(b) The wavelengths are 1550.918, 1551.721, 1552.524, 1553.329, and 1554.134 nm.

(c) The total launch power is 5 mW so the power per channel is 1 mW.

(d) From (5.15), the chromatic dispersion limit for 1 dB penalty is

L = 0.306/(2.5 Gb/s× 0.1 nm× 17ps/nm− km) = 72 km.

For PMD, using (5.23), we must have

L =
(

0.1× 400 ps

0.5 ps/
√

km

)2

= 6400 km.

To compute the loss limit, we need to assume a particular receiver sensitivity and wavelength

demultiplexer loss. Assuming a sensitivity of −30 dBm for the receiver (see Figure 4.9) and

a loss of 5 dB for the demultiplexer, the allowable link budget, assuming no additional

margins are required, is 32 dB, which translates into a link length of 128 km.

(e) The limiting factor is chromatic dispersion, and the allowed link length is 72 km.
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5.7 (a) Left to the reader.

(b) Since the fiber has zero dispersion at 1310 nm, the link is loss limited, not chromatic

dispersion limited.

(c) From Section 4.4.1, we have, for an ideal quantum limited receiver,

BER = 0.5e−M

where M is the average number of photons received during a 1 bit. We need M = 27 for a

BER of 10−12. The corresponding average power, including 0 bits, is

1

2
hf MB = 0.5∗6.63×10−34×

3× 108

1310× 10−9 × 27× 2.5× 109 = 5.12×10−6 mW = −53 dBm.

(d) The average photocurrent is given by

e

hf
P = 5.4× 10−6 mA.

(e) Since the link loss is 24 dB, we would need a launch power of −53+ 24 = −29 dBm.

5.8 (a) Left to the reader.

(b) Since there are two additional 3-dB couplers in the path, the launch power needs to be

increased to −23 dBm.

(c) At 2.5 Gb/s, the sensitivity at 1550 nm can be calculated as in Problem 5.7 to be 4.33 ×
10−6 mW = −53.6 dBm. At 10 Gb/s, the sensitivity is 17.32× 10−6 mW = −47.6 dBm.

(d) The PMD limit is independent of the wavelength. Using (5.23), the limiting bit rate for

both systems is given by

B <
0.1

DPMD

√
L
= 0.1

1× 10−12
√

60
= 12.9 Gb/s.

The chromatic dispersion limited bit rate for the 1550 nm channel is given from (5.15) as

B <
0.306

DL1λ
=

0.306

17 ps/nm-km× 60 km× 0.1 nm
= 3 Gb/s.

The loss limit depends on the launch power used.

(e) 10 Gb/s cannot be transported in the new system because of the chromatic dispersion

limitation.

(f) At 2.5 Gb/s, for the 1550 nm channel, we need a minimum launch power of −53.6+ 0.25×
60+ 6 = −32.6 dBm.

5.9

PP = −10 log







R(P ′1−P ′0)
σ ′1+σ ′0R(P1−P0)
σ1+σ0







If we assume P1 � P0, P ′1 � P ′0, σ ′1 � σ ′0, σ1 � σ0 and σ1α
√

P1, σ ′1α
√

P ′1, we get

PPsig-indep = −10 log





√

P ′1
√

P1



 = −5 log
P ′1
P1

.
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5.10

PP = −10 log







R(P ′1−P ′0)
σ ′1+σ ′0R(P1−P0)
σ1+σ0






.

With an ideal extinction ratio, we have P1 = 2P , P0 = 0, σ 2
1 = 2xP + y, and σ 2

0 = y, where

x = 4R2GPn(G − 1)Be and y = 2R2[Pn(G − 1)]2(2Bo − Be)Be. Here we have considered only

signal-spontaneous and spontaneous-spontaneous beat noise.

With an extinction ratio of r, we have (see Section 5.3, p. 207), P ′1 = 2rP/(r + 1), P ′0 =
2P/(r + 1), σ ′21 = 2xrP/(r + 1)+ y, and σ ′20 = 2xP/(r + 1)+ y.

Therefore,

PP = −10 log





2PR(r−1)/(r+1)√
2xrP/(r+1)+y+

√
2xP/(r+1)+y

2PR√
2xP+y+√y





= −10 log

(

r − 1

r + 1

√
2xP + y +√y

√
2xrP/(r + 1)+ y +

√
2xP/(r + 1)+ y

)

.

If y � 2xP/(r+1), that is, the spontaneous-spontaneous noise term can be neglected in comparison

with the signal-spontaneous term, even for a 0 bit (in the nonideal extinction ratio case), this

expression simplifies to

PP = −10 log

(

r − 1

r + 1

√
r + 1√
r + 1

)

.

5.11 Solving equations (5.6) and (5.7) with the given values of the other parameters (Gmax = 35 dB, l =
120 km, α = 0.25 dB/km, nsp = 2, P sat = 10 mW, and Bo = 50 GHz), we get, P out = 11.524 mW

and G = 999.998. Since the loss between stages is 0.25×120 = 30 dB, or 1000, the steady-state gain

is slightly smaller, as expected. The steady-state amplifier output power (11.5 mW) is somewhat

larger than its internal saturation power (10 mW).

We assume that a signal with an input power of 1 mW is transmitted. The evolution of the

signal power and optical SNR, at the output of each amplifier, are plotted below.
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Note that the signal power reaches its steady state value of 11.5 mW calculated above, after a

few stages. The optical SNR increases for the first few stages but later decreases with increasing

number of stages, due to accumulation of noise at each stage.

5.12 Using P ′0 = εP , σ ′0 ∝
√

εP , P ′1 = P(1 − 2
√

ε), and σ ′1 ∝
√

P ′1, we get,

P ′1 − P ′0
σ ′1 + σ ′0

= 1− 2
√

ε − ε
√

ε +
√

1− 2
√

ε

√
P .

Using
√

1− 2
√

ε = 1 −
√

ε + O(ε), the
√

ε terms in the denominator cancel and we get the

denominator is 1+O(ε). Neglecting the O(ε) terms, and using this along with σ1 ∝
√

P in (5.2),

we get (5.12).

5.13 E(t) =
√

2Pds(t) cos [ωct + φs(t)]+
N
∑

i=1

√

2εi dxi(t) cos [ωct + φxi(t)] .

The received power is proportional to the square of the electric field and is thus given by

Pr = Pds(t) +
N
∑

i+1

εidxi(t)+
N
∑

i=1

2
√

εi Pdxi(t) cos [φs(t)− φxi(t)]
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+
N
∑

i=1

N
∑

j=1

2
√

εiεjPdxi(t)dxj (t) cos[φxi(t)− φxj (t)].

Neglecting the
√

εiεj term, we get (5.9)–(5.12) with
√

ε =
∑N

i=1
√

εi in (5.9) and (5.10) and

ε =
∑N

i=1 εi in (5.11) and (5.12).

5.14 Equation (5.16) is an approximation because L
l

may not be an integer.

A precise form of this equation is

Le =
1− eαl

α

⌊

L

l

⌋

+ 1− e−α(L−bL
l
cl)

α
.

This equation is derived by observing that when amplifiers are placed l km apart, there are
⌊

L
l

⌋

amplifiers in a link of length L. Adding the contributions from these
⌊

L
l

⌋

spans gives the first term.

The second term is the effective length of the remaining link length, namely, L−
⌊

L
l

⌋

l.

5.15 Let δ = 10−C/10. Since the crosstalk adds coherently, (5.9) applies if we assume detection limited

by thermal noise.

(a) For coherent addition of crosstalk in N stages, the crosstalk level after N nodes is (N
√

δ)2.

(b) After 5 nodes, the crosstalk level is (5
√

δ)2 = 25δ. The crosstalk penalty is is given by

PP = −10 log (1− 2
√

25δ).

For a 1 dB penalty, C = 33.7 dB.

5.16 Assume the crosstalk power from each adjacent channel is ε
2P and the crosstalk power from

non-adjacent channels is negligible. Then

P0 =
2P

r + 1
and P1 =

2rP

r + 1
where P = P0 + P1

2
where

P1

P0
= r.

In the worst case,

P ′(1) = 2rP

r + 1
+ ε

2P

r + 1
= 2P

r + 1
(r + ε) (adjacent channels send a 0 bit),

and

P ′(0) = 2P

r + 1
+ ε

2rP

r + 1
= 2P

r + 1
(1+ εr) (adjacent channels send a 1 bit).

So we get

PPsig-indep = −10 log

(

r + ε − 1− εr

r + 1

)

= −10 log

[

(r − 1)(1− ε)

r + 1

]

.

For r = 10 (10 dB extinction ratio), ε = −15.35 dB. Therefore, for each adjacent channel, the

crosstalk supression should be −18.35 dB.

5.17 (a) Let C dB correspond to a fraction δ, that is, δ = 10−C/10. After demultiplexing, a fraction

δ of the power from say, wavelength i, is present in the adjacent channels i + 1 and i − 1.



44 Transmission System Engineering

After multiplexing, at the wavelength i, we get two crosstalk signals with powers δ2

each added coherently for a total power of 4δ2. We assume that the detection is limited by

thermal noise, so that (5.9) applies. In this case we have ε = 4δ2 for each stage and after N

stages,√
ε = N

√

4δ2.

Thus

PP = −10 log(1− 2
√

ε)

= −10 log(1− 20δ) for N = 5

= −10 log(1− 20× 10−C/10).

(b)

PP < 1 dB⇒ 1− 20× 10−C/10 < 10−0.1,

or 10−C/10 > 0.0103,

or C > 19.9 dB.

5.18 The crosstalk from the mux/demuxes due to each adjacent channel is 2 × (−25) = −50 dB below

the desired signal. However, this is intrachannel crosstalk as is the crosstalk of −40 dB from the

switch. Thus there are three crosstalk signals with ε1 = ε2 = 10−50/10, and ε3 = 10−40/10 at each

stage.

After N stages, there are 3N crosstalk signals with 2N of them 50 dB below and N of them

40 dB below the signal. Therefore,

ε =
(

N

3
∑

i=1

√
εi

)2

= 2.665× 10−4N2.

For a 1-dB penalty,

−10 log (1− 2
√

ε) < 1

or
√

ε < 0.103

or 0.0163N < 0.103

or N < 6.3.

Therefore, six nodes can be cascaded in a network with a penalty < 1 dB for detection limited by

thermal noise.

5.19 (a) The best case transmittance is when all the muxes and demuxes have their centre wavelength

λ′c = λc. The transmittance in this case is 1, or equivalently, 0 dB. The worst case

transmittance occurs when all the muxes and demuxes have their center wavelengths at

λc +1λ or λc −1λ. This worst case transmittance is given by
[

e−(1λ)2/2σ 2
]N

= (0.9692)N = 0.1357N dB.
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(b) We need
[

e−(1λ)2/2(0.2)2
]10
= 1

2
,

which yields 1λ = 0.0745 nm.

5.20 From each adjacent channel, the crosstalk power in one stage for 0.8 nm separation is given by

e−(0.8)2/2(0.2)2 = 3.3546× 10−4 = −34.74 dB.

Thus after N stages the crosstalk power = 31.73N dB. When the adjacent channels are at the

worst-case positions, the crosstalk power from both adjacent channels is given by

2× e−(0.75)2/2(0.2)2 = −27.53 dB.

After N stages, the crosstalk power = 27.53N dB.

5.21 The added wavelength undergoes a loss of

1 dB (new circulator)

+ 20 dB (grating transmission of 1% corresponding to reflectivity of 99%)

+ 1 dB (“drop” circulator)

= 22 dB.

So the crosstalk power from leakage of the added wavelength into the dropped wavelength

= 0 dBm− 22 dB = −22 dBm.

The loss undergone by the dropped wavelength is

1 dB (“drop” circulator)

+ 20 dB (grating)

+ 1 dB (“add” circulator)

= 22 dB.

Thus the crosstalk power from the dropped wavelength into the added wavelength

= −30 dBm− 22 dB = −52 dBm, which is small compared to the power of the added signal.

However, the crosstalk power from the added signal (−22 dBm) into the dropped signal is much

larger than the power of the dropped signal itself, which is

−30 dBm

− 1 dB (first circulator pass)

− 0.04 dB (grating)

− 1 dB (second circulator pass)

= −32 dBm.

Therefore the element will not work.

5.22 From the solution of Problem 5.30,

T0,opt = (1+ κ2)1/4
√

|β2|L.

Setting κ = 0 for an unchirped pulse, we get

T0,opt =
√

|β2|L.
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5.23

PP(dB) = α
1τ 2

T 2
ε(1− ε).

Denote the probability density function of 1τ by f1τ (.) and its (cumulative) distribution function

by F1τ (.).

Pr (PP < p) = Pr
(

1τ 2ε(1− ε) ≤ x = T 2p/α
)

=
∫ ∞

t=0
Pr
(

ε(1− ε) ≤ x/1τ 2|1τ = t
)

f1τ (t) dt

=
∫ ∞

t=0
Pr

((

ε − 0.5+
√

0.25− x/t2

)(

ε − 0.5−
√

0.25− x/t2

)

> 0

)

f1τ (t) dt

Pr

((

ε − 0.5+
√

0.25− x/t2

)(

ε − 0.5−
√

0.25− x/t2

)

> 0

)

= 1, for t2 < 4x,

= 1−
√

1− 4x/t2, for t2 ≥ 4x.

Therefore,

Pr
(

PP < p = xα/T 2
)

= F1τ

(

2
√

x
)

+
∫ ∞

t=2
√

x

(

1−
√

1− 4x/t2

)

f1τ (t) dt

= 1−
∫ ∞

t=2
√

x

√

1− 4x/t2f1τ (t) dt.

Using (see Appendix H.1.2),

f1τ (x) =
√

2

a3√π
x2e−x2/2a2

, x ≥ 0,

and the relation (use a symbolic integration package such as MathematicaTM or see a table of

integrals),

∫ ∞

t=y

√

t2 − y2

t
f1τ (t) dt = e−y2/2a2

,

we get,

Pr
(

PP < p = xα/T 2
)

= 1− e−4x/2a2 = 1− e−4pT 2/2αa2
.

Therefore, PP is exponentially distributed with mean αa2/2T 2. Using 〈1τ 〉 = 2a
√

2/π (Appendix

H.1.2) or a = 〈1τ 〉
√

π/8, the mean of PP is πα〈1τ 〉2/16T 2.

Pr (PP ≥ 1) = e
− 16T 2

πα〈1τ 〉2 .



47

Assuming α = 16 and 〈1τ 〉 = 0.3T , Pr (PP ≥ 1) ≈ 0.03. Thus, if the average DGD is less than 0.3T ,

the power penalty due to PMD is unlikely to exceed 1 dB.

5.24

dIs

dz
= −gBIpIs + αIs . (5.17)

dIp

dz
= −gBIpIs − αIp . (5.18)

Neglecting the depletion of the pump wave, (5.18) becomes

dIp

dz
= −αIp .

Solving this equation, we get

Ip(z) = Ip(0)e−αz.

Substituting this in (5.17) yields

dIs

dz
= −gBIp(0)e−αzIs + αIs

= (α − gBIp(0)e−αz)Is ,

or,

dIs

dz
+ (gBIp(0)e−αz − α)Is = 0.

Solving, we get

e−αzegBIp(0) e−αz

−α Is(z) = constant, c.

Setting z = 0, we obtain

c = e−gBIp(0)/α Is(0).

Therefore,

Is(z) = eαz e
−gBIp(0)

α [1−e−αz]Is(0)

or Is(L) = eαL e
−gBIp(0)

α [1−e−αL]Is(0).

Recognizing that 1−e−αL

α
= Le and using Pp = AeIp and Ps = AeIs we get

Pp(L) = Pp(0)e−αL

and

Ps(0) = Ps(L)e−αL e
gBPp(0)Le

Ae .
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5.25 As the SBS interaction occurs within a single wavelength, it does not matter whether the system

has one or many channels.

(a) Only the line width of a single line matters since the line separation is much greater than

the SBS gain bandwidth 1fB of 20 MHz. The SBS threshold power

Pth ≈
21bAe

gBLe

(

1+ 1fsource

1fB

)

.

Assuming b = 1,

Pth ≈ 1.3

(

1+ 1fsource

1fB

)

mW.

For 1fsource = 1 GHz and 1fB = 20 MHz, Pth = 66 mW.

(b) Again Pth ≈ 1.3
(

1+ 1000
20

)

≈ 66 mW.

(c) Pth ≈ 1.3
(

1+ 10000
20

)

≈ 650 mW.

5.26 (a) From (5.27),

TL

T0
=
√

1+
√

2
Le

LNL

L

LD

+
(

1+ 4

3
√

3

L2
e

LNL
2

)

L2

L2
D

.

Therefore,

T 2
L = T 2

0 +
√

2
Le

LNL

Lβ2 +
(

1+ 4

3
√

3

L2
e

LNL
2

)

β2
2L2

T 2
0

.

Denoting, κ2
NL =

4
3
√

3
L2

e

LNL
2 , the optimum T0 satisfies (see solution to problem 5.30),

∂T 2
L

∂T0
= 0

or T0,opt(L) =
√
|β2|L(1+ κ2

NL)1/4.

(b) Denoting α =
√

2Le/LNL (which is also proportional to κNL), the optimum final pulse

width TL,opt is obtained by solving

T 2
L,opt = T 2

0,opt + αLβ2 +
(

1+ κ2
NL

) β2
2L2

T 2
0,opt

,

as

TL,opt(L) =
√

|β2|L
√

2
√

1+ κ2
NL + sgn(β2)α.

Note the similarity to TL,opt in the solution of Problem 5.30. In fact, by setting κNL = κ

and α = 2κ in the above expression, we get the expression for TL,opt in Problem 5.30, as

we expect.

We assume that satisfactory communication is possible with a power penalty PP(ε) if

the width of the pulse as measured by its rms width T rms is less than 1 + ε times the bit

period. Therefore, we must have, TL <
√

2(1+ ε)/B. The maximum link length for which

the output pulse has an rms width less than (1 + ε) times the bit period is given by the

solution of

T 2
L,opt(L) = 2(1+ ε)2/B2

which is

Lmax =
2(1+ ε)2

B2|β2|
√

2
√

1+ κ2
NL + sgn(β2)α

.

We further assume, somewhat arbitrarily but in analogy with the NRZ pulse case, that

ε = 0.306 for a power penalty of 1 dB, that is, PP(0.306) = 1 dB. We can now calculate
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Lmax based on the other system parameters. E.g., for B = 10 Gb/s, D = 17 ps/km-nm,

λ = 1.55 µm, Le = 20 km and LNL = 38.4 km (which corresponds to a transmit power of 10

mW; see page 89), we get, Lmax = 1077 km , T0,opt(Lmax) = 160 ps, and TL,opt(Lmax) = 185
ps.

(c) If only chromatic dispersion were present, using (2.13), the output pulse width at the end

of a link of length Lmax when the input pulse width is T0,opt is given by

Tdisp(Lmax)
2 = T0,opt(Lmax)

2 + β2
2L2

max/T0,opt(Lmax)
2

= |β2|Lmax





√

1+ κ2
NL +

sgn(β2)
√

1+ κ2
NL



 .

We can calculate the pulse broadening factor εdisp due to dispersion using T 2
disp = 2(1 +

εdisp)
2/B2 and estimate the power penalty due to dispersion alone by interpolation, using

the values PP(0) = 0 dB, PP(0.306) = 1 dB and PP(0.491) = 2 dB. For the same values as

in (b), Tdisp(Lmax) = 216 ps and εdisp = 0.53 and we estimate that the power penalty due to

dispersion alone to be 2.2 dB. Thus, in this example, the SPM penalty is −1.2 dB.

In general, the SPM penalty calculated in this way is negative if D > 0, that is, β2 < 0 and

positive otherwise.

Interestingly, we observe from the expressions for TL,opt and Tdisp that their ratio, and hence the

SPM penalty calculated as above, depends only on Le/LNL (through κNL and α) and the sign of D

(or β2), and is independent of the actual value of D.

5.27 Using a computer program, a set of wavelengths with this property is 193.1, 193.3, 193.6 and

194.0 THz.

5.28
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5.29 Second order nonlinearities typically have no effect on a lightwave system since the resulting

frequencies (f1+f2) and (f1−f2) are out of band as long as the set of frequencies f1, f2, . . . , fN all

lie within a single octave, which is usually the case. In any event, the second order susceptibilities

in silica are negligible.

5.30 The frequency spectrum of the source is given by

F(ω) = B0ω0e
−(ω−ω0)

2/2ω2
0 ,
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where we have assumed a Gaussian profile. The rms spectral width is

ωrms =
ω0√

2

(see solution to (2.10)). The 20-dB spectral width is given by 2(ω20 − ω0) where ω20 solves

e−(ω20−ω0)2/ω2
0 = 0.01.

We have used ω2
0 instead of 2ω2

0 in the exponent since the pulse power is proportional to the square

of its amplitude. Solving this equation yields

2(ω20 − ω0) =
√
−4 ln 0.01ω0.

Therefore

20-dB spectral width

6.07
=
√
−4 ln 0.01

6.07
ω0 = 0.707ω0 = rms spectral width.

5.31 From (2.25),

TL =

√

(

T0 +
κβ2L

T0

)2

+
(

β2L

T0

)2

.

The optimum T0 satisfies

∂T 2
L

∂T0
= 0

⇒ 2
(

T0 + κβ2L
T0

)

(

1− κβ2L

T 2
0

)

+ 2β2L
T0

(

−β2L

T 2
0

)

= 0

⇒ (1+ κx)(1− κx) = x2 where x = β2L

T 2
0

⇒ x2 = 1
1+κ2

or T0,opt =
√
|β2|L(1+ κ2)1/4.

Therefore, we have

TL,opt = T0,opt

√

(

1+
sgn(β2)κ√

1+ κ2

)2

+
1

1+ κ2

=
T0,opt√
1+ κ2

√

(
√

1+ κ2 + sgn(β2)κ
)2
+ 1

=
√

|2β2|L
√

√

1+ κ2 + sgn(β2)κ.

In the 1.55 µm band, β2 < 0. Thus for κ = −6,

TL,opt =
√

24.166|β2|L.

The condition BT rms
L < ε translates to

BTL,opt < ε
√

2
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or B
√

24.166|β2|L < ε
√

2

or Bλ

√

12.08|D|L
2πc

< ε.

For D = 17 ps/km-nm, λ = 1.55 µm, and ε = 0.491 (2 dB penalty), we get

B2L < 921.05 (Gb/s)2-km. For B = 1 Gb/s, L < 921 km.

For the same values of D, λ,and ε, we have from Figure 2.10 (and the accompanying explanation)

that B2L < 11126 (Gb/s)2-km. Thus for B = 1 Gb/s, L < 11,126 km which is much higher.





6
c h a p t e r

First-Generation Optical

Networks

6.1 (a) Optical channel layer and/or SONET path layer.

(b) This would be handled by the SONET line layer, not any of the optical layers.

(c) Again this would be done by the SONET section layer. However, we may have OEOs

within the optical layer itself to regenerate the signal on a wavelength-by-wavelength basis

if we have exhausted the optical system link budget. In this case, the OEOs may monitor

the error rate as well, and this function would be part of the optical channel layer.

6.2
System Loss Range at 1550 nm Range at 1310 nm

SR 0–7 dB 0–28 km 0–14 km

IR 0–12 dB 0–48 km 0–24 km

LR 10–24 dB 40–96 km 20–48 km

6.3 The link from the S-16.1 transmitter to the I-16 receiver, we have:

Tx power: 0 to -5 dBm,

loss: 0 to 7 dB, and

Rx power: -3 to -18 dBm.

The maximum power received is 0 dBm and happens when the transmit power is 0 dBm and the

loss is 0 dB. This is 3 dB larger than the receive overload value and hence in this case, a VOA with

a range of 3 dB is needed.

For the link from the I-16 transmitter to the S-16-1 receiver, we have:

Tx power: -3 to -10 dBm,

loss: 0 to 7 dB, and

Rx power: 0 to -18 dBm.

The maximum power received is−3 dBm and happens when the transmit power is−3 dBm and the

loss is 0 dB. This is less than the receive overload value and hence in this case, no VOA is needed.
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7
c h a p t e r

WDM Network Elements

7.1 (a) Let L denote loss between the two nodes in dB. Then power received on λ1 at node B’s

input is 0−L dBm. Minimum power on desired wavelength is−30 dBm. To get a crosstalk

of 15 dB, assuming a suppression of S dB, we must have

−L− S ≤ −45 dB.

In a worst-case scenario L = 0 dB, in which case, we need S = 45 dB.

(b) Assume that 0 dBm is input to node A at the dropped wavelength. If T is the intrachannel

crosstalk suppression, then the crosstalk power exiting node A is −T dBm. With the signal

at 0 dBm, we must have

0− T ≤ −30 dB,

or T ≥ 30 dB, independent of the link loss.

7.2 A simple wavelength assignment for the lightpaths is AB, BC, and CD at λ1; AC at λ2; and BD at

λ3. Then node A drops/adds λ1, λ2; node B drops/adds λ1, λ3; node C drops/adds λ1, λ2; and node

D drops/adds λ1, λ3.

For the new lightpaths, one possible wavelength assignment is AB, BC, and CD at λ1; AD at

λ2; and BC at λ3. Then node A drops/adds λ1, λ2; node B drops/adds λ1, λ3; node C drops/adds

λ1, λ3; and node D drops/adds λ1, λ2.

Note that nodes C and D have changed from before.

7.3 (a) Left to the reader.

(b) With N intermediate OADMs, the total loss along the path is 2N + 2+L where L denotes

the total link loss. Therefore 2N + 2+ L ≤ 30.

(c) Left to the reader.

7.4 Consider the following OADM architecture.
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Tunable filter Switch

Splitter Combiner

Tunable transponders

The main difference between this architecture and that of Figure 7.7(d) lies in the use of tunable

filters and small switches instead of a mux/demux and a big switch. Since splitters and combiners

are used, there is a minimum passthrough loss of 20 logW , where W is the number of channels. So

a 32-channel OADM will have a minimum passthrough loss of 32 dB, which is quite high. Also

now a tunable filter is required for each wavelength, which may or may not be more expensive

than using a fixed filter and a port on a big switch.

Tunable filter

Splitter Combiner

Tunable transponders

Demux Mux
VOA

Another plausible OADM architecture is shown above. Here a wavelength blocker device (a

demux/mux combination with a per-channel variable optical attentuator) is used to either block

the add/drop channels from passing through as well as equalize power levels for the passthrough

channels. The loss in the passthrough path is low, but the loss in the add/drop path is high due to

the splitters and combiners. However, tunable filters need be provided only for drop channels and

not for all channels.

7.5 Each remote node drops and adds 2 wavelengths and 8 wavelengths are needed in total. Hub drops

and adds all wavelengths.

System 1: Remote node needs 1 OADM and 2 regenerators for a cost of $40,000. Hub node

requires 2 OADMs for a cost of $40,000, so total network cost is $200,000.

System 2: Remote node needs 2 OADMs for a cost of $20,000. Hub node needs 8 OADMs at

$80,000. Total network cost including amplifiers is $220,000.

7.6 (a) For each WDM system, we require 24 line ports on the OXC and 16 trib ports, or 40 ports.

Therefore a 256-port OXC can support 6 WDM systems.

(b) Out of the 24 lightpaths passing through, 6 of them need to be converted, taking up a
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total of 12 additional OXC ports. Now we need 52 ports per WDM system. Therefore a

256-port OXC can support 4 WDM systems.

(c) The 24 lightpaths passing through take up only 6 OXC ports, and the 16 drop/adds take

up 4 more ports for a total of 20 ports. Therefore a 256-port OXC can support 12 WDM

systems.

7.7 (a) The figure is essentially Figure 7.15. However, since the tuning range is limited, the add/drop

switch can be partitioned into a number of smaller switches, each switch being connected

only to a subset of the passthrough wavelength plane switches. In this case, we will use 5

smaller switches, the first one connected to wavelength plane switches for λ1 through λ8,

the second connected to the switchesfor λ9 through λ17 etc.

The 4 add/drop channels may all be within a single band. So we need to pre-equip the

node with 4 tunable lasers for each band, or a total of 20 tunable lasers.

(b) Since each laser now tunes over 2 bands, we can reduce the number of pre-equipped

transponders but will need larger add/drop switches. Each add/drop switch needs to be

connected to the wavelength plane switches for 2 bands. Say we decide to allocate a pool

of lasers for bands 1 and 2, another pool for bands 3 and 4, and a third pool for band 5.

Now we’ll need to pre-equip 4 transponders for each pool, or a total of 12 transponders.
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Control and Management

8.1 (a) Setting up and taking down lightpaths in the network: OCh

(b) Monitoring and changing the digital wrapper overhead in a lightpath: OCh

(c) Rerouting all wavelengths (except the optical supervisory channel) from a failed fiber link

onto another fiber link: OMS

(d) Detecting a fiber cable cut in a WDM line system: OTS

(e) Detecting failure of an individual lightpath: OCh

(f) Detecting bit errors in a lightpath: OCh

8.2 Number the nodes from left to right. Node 2 is the amplifier for example. Assume that the

regenerator is part of the SONET layer and that the connection is processed by each network

element shown in the figure. The story would be different if the signal were for example bypassed

through Node 3 optically without going to the SONET ADM. In this case, Node 3 would terminate

layers up to the OMS only for this connection.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Path Path

Line Line Line Line

Section Section Section Section Section

OC OC OC

OMS OMS OMS

OAS OAS OAS OAS

8.3 Assume the fiber cut occurs at time 0, and at the middle of the link between A and B. Also

assume time is an integer in millseconds. The following events would occur. 0: Fiber cut.

1: Loss of light at node B.

3=1+2: Node B detects loss of light.

8=3+5: Node B transmits OMS-FDI to node E, and OTS-BDI to node A.

11=8+3: OTS-BDI received by node A, if the fiber from B to A is not cut.

17=8+3+3+3: OMS-FDI from B received by E.

22=17+5: OCh-FDI transmitted by E for all lightpaths passing through it, for example,
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those destined for G. 25=22+3: OCh-FDI received from E for lightpaths affected by the

cut.

2003=3+2000: Alarm raised by node B.

If FDI signals are sent immediately, the following would be the timeline. 0: Fiber cut.

1: Loss of light at node B.

3=1+2: Node B detects loss of light.

3=3+0: Node B transmits OMS-FDI to node E, and OTS-BDI to node A.

6=3+3: OTS-BDI received by node A, if the fiber from B to A is not cut.

12=3+3+3+3: OMS-FDI from B received by E.

12=12+0: OCh-FDI transmitted by E for all lightpaths passing through it, for example,

those destined for G. 15=12+3: OCh-FDI received from E for lightpaths affected by the

cut.

2003=3+2000: Alarm raised by node B.

There is not much difference between the two methods.

8.4 In an OXC with an electrical core and OEO conversion, the OXC can either use some of

SONET/SDH overhead bytes, or use a digital wrapper, or an out-of-band signaling channel.

The out-of-band channel can be carried on a separate wavelength, part of a wavelength

(example: an OC-3 multiplexed into an OC-192 stream by the OLTs) or on a separate

network, It can thus communicate in-band or out-of-band with other OXCs. It could

monitor virtually all performance parameters used by SONET/SDH systems, including

BER.

In an OXC with an optical core and no OEO conversion, the OXC has to use an out-of-band

signaling channel, carried as stated above. It could monitor a limited set of performance

parameters such as optical power level and optical SNR. Direct monitoring of performance

parameters such as BER would not be possible.

8.5 (a) Note that both τ and τ ′ > 2dprop for the protocol to work.

(b) The time taken is always τ + τ ′ + τ = 2τ + τ ′.
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Network Survivability

9.1 Consider connection CE in the figure below. If link BC fails, we have the following

(a) path protection: Connection is restored along CDE (2 hops).

(b) line protection: Connection is restored along CDEABAE, which is very inefficient, compared

to path protection.

A

B

C

D

E

Next consider a 1 hop connection DE. If link DE fails, both path and line protection use

DCBAE to restore the connection. In this case, both need the same amount of bandwidth for

restoration. In general, path protection is better (more efficient use of bandwidth) at restoring

multihop connections than line protection.

9.2 Consider a link carrying traffic equal to its working capacity. If that link fails, then there is no way

to restore traffic unless protection capacity = working capacity.

9.3 Note first that if both types of rings operate at, say, OC-12 speeds, the maximum concatenated

connection stream that can be carried in a UPSR is OC-12c, whereas in a BLSR/2, it is OC-6c

(because half the bandwidth on each fiber is reserved for protection). This is true regardless of the

traffic pattern.

Consider rings with N nodes and an additional hub. Let ti denote the traffic between node i

and the hub. First note that since all traffic must be routed to the hub, the working capacity into
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the hub is only C, where C is the link speed. Therefore traffic patterns for which
∑N

i=1 ti > C

cannot be supported,

We will show that in both the UPSR and the BLSR/2, all traffic patterns such that
∑N

i=1 ti ≤ C,

can be supported (assuming traffic from a single node in a BLSR/2 can be split across two routes,

if necessary). First consider the UPSR. Traffic from node i uses capacity ti on every link in the ring

(considering both working and protection traffic). Therefore this traffic can be supported provided
∑N

i=1 ti ≤ C.

Now consider the BLSR/2. Note that only a capacity of C/2 on every link is available for

working traffic. Consider a traffic pattern such that
∑N

i=1 ti ≤ C. From node i, we route ti/2 units

clockwise and ti/2 units counterclockwise on the ring to the hub. With this routing the traffic load

on each link is
∑N

i=1 ti/2 ≤ C/2. Therefore this traffic pattern can be supported.

Therefore the UPSR and BLSR/2 can support the same set of traffic patterns in this case.

Thus a UPSR is superior for this application because it has the same traffic carrying capacity as

a BLSR/2, and in addition,

supports OC-12c connections,

has faster protection, and,

is a simpler and less expensive system.

9.4 The traffic distribution has all traffic between adjacent pairs of nodes. So the capacity is NC, where

C is the bit rate on the fiber and N the number of nodes.

9.5 For the uniform traffic case, the average hop length is approximately N/4, where N is the number

of nodes. So the reuse factor is approximately 4. So the capacity is 4C, where C is the bit rate on

the fiber.

9.6 (a) Left to the reader.

(b) Left to the reader.

(c) For UPSR, both the routes around the ring need to be used for work and protect. Thus

each demand utilizes the bandwidth on every link in the network. Since the total demand

is 80 STS-1s, this bandwidth is used by UPSR on every link in the network.

For BLSR, use the shortest path between nodes. This yields a load of 24 on the links

A–B, B–C and C—D, a load of 8 on D–E and 22 on E–A. The average load arising from

shortest path routing is a lower bound on the maximum load (from (8.10) together with

the solution of Problem 8.7). Thus, under any routing scheme, the maximum load cannot

be lower than d(24× 3 + 8 + 22)/5e = 21. We can get a better lower bound by reasoning

as follows. Club the nodes D and E into one node “DE” to get a 4-node ring with the

following demand matrix (ignoring the demand between D and E).

STS-1 B C DE

A 12 6 16

B 8 16

C 14

The average link load (rounded up) due to shortest path routing on this 4-node ring is

d(12+ 6× 2+ 16+ 8+ 16× 2+ 14)/4e = 24. This is a lower bound on the maximum load

for the original 5-node ring. (To prove this, observe that if this is not the case and there is

a routing scheme for the 5-node ring which yields a better maximum load, then the same
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scheme can be applied to the 4-node ring leading to a contradiction.) Thus the maximum

load of 24 obtained using shortest path routing is optimal.

(d) UPSR requires an OC-192 ring whereas BLSR only requires an OC-48 ring.

(e) BLSR is better since OC-48 rings are cheaper than OC-192 rings.

9.7 With 2 cuts, the network is partitioned into two clusters of nodes without any connection between

the two clusters. Nodes within each cluster can communicate. Note that this is the case with all

rings in general.

The UPSR can handle multiple cuts in one of the two rings because the other ring will be still

fully functional. While it is quite likely that both fibers on a link get cut at the same time, this

capability still enables the UPSR to continue providing service when a transmitter or receiver fails.

Unlike the UPSR, the BLSR/2 cannot handle multiple cuts because the protection capacity is

shared.

The BLSR/4 can handle multiple failures of transmitter/receivers (one per span). It can handle

simultaneous cuts of 1 fiber pair per span. Note that once span protection is used, line protection

cannot be used any more to recover from another failure.

9.8 This scheme works fine under normal operation but cannot protect individual connections in case

of a failure. For example, in Figure 9.4, if AB is cut, then receiver D must receive connections from

A on the counter-clockwise ring but connections from B and C on the clockwise ring.

9.9 The three approaches are illustrated in the figure below. There is no difference between them as far

as line protection is concerned. Also, span protection in the case of equipment failures works the

same way in all the approaches. However span protection in the case of fiber cuts works differently.

Option (1) allows span protection to be used in case of a single fiber cut, whereas options (2) and

(3) do not allow span protection to be used for this case. Therefore, we will pick option (1).

BLSR/4

ADM

BLSR/4

ADM

BLSR/4

ADM

BLSR/4

ADM

BLSR/4

ADM

BLSR/4

ADM

W

W

P

P

W

W

P

P

W

W

P

P

W

W

P

P

W

W

P

P

W

W

P

P (1)

(2)

(3)
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9.10 (a) Once span protection is invoked, network management must prevent line protection from

being invoked. Likewise, when line protection is invoked, network management must

prevent span protection from being activated.

(b) Network management must allow span protection to be invoked on multiple spans, if

needed.

9.11 As with a UPSR, this arrangement can handle multiple failures of fibers in one direction of the ring.

This arrangement can also handle the fiber pairs AD and BC failing simultaneously.

9.12 Assume the nodes are located in the ring in the order C, A, H, B, D, that is, nodes A and B are at

distance 1 from the hub H, and nodes C and D are at distance 2. Using shortest paths from each

of the access nodes to the hub node, we need 2 units of working capacity on each of the links A–H

and B–H, and one unit of working capacity on each of the links C–A and D–B, for a total of 6 units

on all the links.

First consider OCh-DPRing. Assume each of the four work paths are assigned distinct

wavelengths. Choose the protect paths as the longer paths on the ring between the access nodes

and the hub. The protect path for each access node can be assigned the same wavelength as the

work path (since all wavelengths are distinct). The work and protect paths from each of the nodes

together consume one unit on every link in the ring, for a total of 4× 5 = 20 units. Thus we need

a protect capacity of 20− 6 = 14 units.

Next consider OCh-SPRing. We assume that while no wavelength conversion is allowed, the

work and protect paths can have different wavelengths. (If this is not the case, and the work and

protect paths must use the same wavelength, for example, if we have no transponders at the ends

of the lightpaths, then the OCh-SPRing case is the same as the OCh-DPRing case and we would

use one we dedicate one wavelength around the ring for each access node.) Assume that the work

paths A–H and B–H are both assigned the wavelength λ1 and the work paths C–A–H and D–B–H

are both assigned the wavelength λ2. We need to dedicate one wavelength each to protect the traffic

on wavelengths λ1 and λ2. Thus we need a total protect capacity of 10 units.

Wavelength conversion would not change the answer in both the cases. Wavelength conversion

or not, with OCh-DPRing each access node needs capacity on every link in the ring. Similarly, even

with wavelength conversion, the work traffic would use 2 units of capacity on some link so that 2

units of protect capacity across the ring would be needed.

9.13 Left to the reader.
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10.1 Note that the topology seen by the routers is the lightpath topology of Figure 10.2(b) with a capacity

of x lightpaths on links A–B and B–C, and a capacity of y lightpaths on link A–C. Denote the A–B

traffic by α, the B–C traffic by β, and the A–C traffic by γ . The traffic matrices or, equivalently,

values of α, β and γ that can be supported depend on the constraints, if any, imposed by routing.

First, assume that all traffic is routed on the direct path in the lightpath topology. This would

be the case if load-balancing on alternate paths is not supported by the IP layer routing protocol.

In this case, the allowed values of α, β, and γ are those that satisfy α ≤ x, β ≤ x, and γ ≤ y.

If alternate routing is allowed, the answer is much more complicated. Let α1 denote the A–B

traffic routed on the direct path A–B, and α2 the A–B traffic routed through C, that is, on the path

A–C–B in the lightpath topology. Similarly, define β1, β2, γ1 and γ2. Note that the traffic γ2 is

dropped to the IP router at node B and reinserted by it, whereas the traffic γ1 passes through node

B without touching the IP router at node B. Then, the supported values of α, β, and γ are those

for which the following inequalities has a feasible solution.

α1 + β2 + γ2 ≤ x

α2 + β1 + γ2 ≤ x

α2 + β2 + γ1 ≤ y

10.2 (a) The routing and wavelength assignment is as follows:

Traffic stream Wavelength Path

AB λ1, λ2, λ3 AB

AD λ1, λ2, λ3 AD

BC λ1, λ2 BC

CD λ1, λ2 CD

BD λ3, λ4 BCD

BD λ4 BAD
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(b) The minimum total traffic load due to all the connections can be computed by using the

minimum number of hops required for each connection as follows:

Traffic stream Traffic Min. hops Traffic load

AB 3 1 3

AD 3 1 3

BC 2 1 2

BD 3 2 6

CD 2 1 2

Total 16

Since there are only 4 edges to carry this load, the average load per edge is 16/4 = 4,

and the maximum load per edge is therefore at least 4. Thus, at least 4 wavelengths are

required.

(c) Node A needs 3 ADMs, node B 4, node C 2, and node D, 4 ADMs.

(d) Each node would need 4 ADMs.

10.3 Consider any source node. The N − 1 traffic streams from that node to the other nodes, when

routed on their shortest paths take up a total number of hops of

hodd = 2

(

1+ 2+ 3+ · · · +
N − 1

2

)

=
N2 − 1

4

for odd N and

heven = 2

(

1+ 2+ 3+ · · · + N

2
− 1

)

= N2

4

for even N . The traffic between each pair of nodes is t/(N − 1), and so the average load due to this

traffic on each edge is

hodd
t

N−1 N

2N
= N + 1

8
t

for odd N and

heven
t

N−1 N

2N
=

N + 1+ 1
N−1

8
t

for even N .

10.4 Since two adjacent nodes use different paths along the ring, only N/2 nodes use any given edge

on the ring. But any node using this edge routes dte lightpaths through it and uses dte different

wavelengths. Thus,

W = N

2
dte

for even values of N .
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For odd values of N , the node diametrically opposite the hub routes dt/2e lightpaths in one

direction and dt/2e lightpaths in the other direction. Therefore,

W =
N − 1

2
dte +

⌈

t

2

⌉

for odd values of N .

10.5 For N = 2 we require only 1 wavelength and

W(2) =
22

8
+

2

4
= 1.

Suppose

W(N) = N2

8
+ N

4

wavelengths are sufficient for some N ≥ 2, even. Then add 2 more nodes as shown below. Each

of the new nodes uses the shortest path to communicate with the other N nodes and shortest

paths (clockwise or counterclockwise) to communicate with each other. The number of additional

wavelengths needed is N
2 + 1.

N/2
nodes

N/2
nodes

New
node

New
node

By the induction hypothesis, the number of wavelengths required is

N2

8
+

N

4
+

N

2
+ 1 =

(N + 2)2

8
+

N + 2N + 4− 2N − 2

4
=

(N + 2)2

8
+

N + 2

4
.

10.6 We will first solve the problem for the case of 1 lightpath between each pair of nodes. When N = 3,

we require only 1 wavelength and

W(3) = 32 − 1

8
= 1.
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Suppose

W(N) = N2 − 1

8

wavelengths are sufficient for some N ≥ 3, odd.

Add 2 more nodes as shown below. The routing is the same as in the N-even case and the new

nodes use the shortest path to communicate with each other. This requires N−1
2 + 1 additional

wavelengths.

N/2
nodes

N/2 + 1
nodes

New
node

New
node

By the induction hypothesis, the number of wavelengths required is

N2 − 1

8
+ N − 1

2
+ 1 = (N + 2)2 − 1

8
.

When we need dt/(N − 1)e lightpaths between each pair of nodes, the expression above must

be modified to

W(N) =
⌈

t

N − 1

⌉

(

N2 − 1

8

)

.

10.7 For N even, we have

N
∑

j=1

hij = 2

[

1+ 2+ · · · +
(

N

2
− 1

)]

+ N

2

=
(

N

2
− 1

)

N

2
+ N

2
= N2

4
.

Thus

Hmin =
∑N

i=1
∑N

j=1 hij

N(N − 1)
= N2

4(N − 1)
= N + 1

4
+ 1

4(N − 1)
.
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For N odd,

N
∑

j=1

hij = 2

(

1+ 2+ · · · +
N − 1

2

)

=
(

N − 1

2

)(

N + 1

2

)

= N2 − 1

4
.

Therefore,

Hmin =
N2−1

4

N − 1
= N + 1

4
.

10.8 Consider the double hub architecture shown in the figure below. Traffic from each node is routed

to the nearest hub through lightpaths. Traffc between hubs (where the source node is closer to one

hub, and the destination node to the other) is routed through lightpath setup between them.

Since each node has to route t units of traffic, it sets up sets up dte lightpaths to the closest hub.

These lightpaths require a total of 2Ndte LTs in the network. We assume the number of nodes

N = 4k. These lightpaths require kdte wavelengths—each of the k nodes on one side (left or right)

that is closest to a given hub, uses dte distinct wavelengths. The same set of wavelengths can be

reused in the four quadrants of the ring.

N/2
nodes

N/2
nodes

Hub

Hub

Assume a node is closer to hub 1 than hub 2. Traffic from this node to the 2k nodes that are

closer to hub 2 has to be routed on the lightpaths between the hubs. This traffic amounts to t
N−1

for each pair of nodes where one is closer to hub 1, and the other to hub 2. Since there are 4k2 such

node pairs, the total traffic that is to be routed between the two hubs is 4k2 t
N−1 . Assume half this

traffic is routed clockwise and the other half, counterclockwise. This traffic thus requires requires

4d2k2 t
N−1e LTs, and d2k2 t

N−1 e wavelengths.

Putting all this together, the number of LTs required per node in this architecture is 2dte +
4
N
dN2

8
t

N−1e, and the number of wavelengths is N
4 dte + d

N2

8
t

N−1 e. In comparison, the single hub

architecture requires 2dte LTs and N
2 dte wavelengths. Thus the double hub architecure requires

more LTs but fewer wavelengths than the single hub architecture.
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10.9 First, there is a typographical error in the problem statement, where λs,t should be λsd .

Since the traffic is bidirectional, λsd = λds .

The objective function changes to
∑

i<j cij · bij , where condition i < j is due to the fact that

the lightpaths are bidirectional. The condition ensures that we consider a lightpath only once in

the summation.

The total flow for all pairs (i, j) is λij =
∑

s,d λsd
ij , and that λij ≤ r.

The degree constraints and bidirectional lightpath constraints remain the same. The nonnegativity

and integer constraints remain the same except variable λmax is not considered.

10.10 The network of Figure 10.21(a) is much better than that of Figure 10.21(b). Consider a unidirectional

lightpath from B to C. The network of Figure 10.21(b) cannot support it, but (a) can. Note that

there is no way around this problem. If we reverse the directions of wavelengths on the link

between C and the hub, then we cannot support a connection from C to A.

10.11 In the multifiber network (A), label the fibers from 1 to P and and wavelengths from 1 to W . In the

single fiber-pair network (B), label wavelengths from 1 to PW . We will associate wavelength (i, w)

in network A (i represents the fiber index and w the wavelength on that fiber) with wavelength

(i − 1)W + w in network B.

Consider a lightpath in network A that uses (i1, w1) on one link and (i2, w1) on the next link.

Note that the wavelength must be the same as there is no conversion in the network. An equivalent

lightpath in network B uses wavelength W(i1 − 1) + w1 and W(i2 − 1) + w1 on the same links.

Note that this is always feasible because of degree P wavelength conversion in network B, which

implies that a wavelength W(i − 1)+ w can be converted to any wavelength W ∗ +w on the next

link. Here ∗ denotes any of the P possible values of i − 1. Therefore network B can support any

lightpath supported by network A.

The proof in the reverse direction is similar.

10.12 The network has approximately O(n) rows and O(n) columns. Thus D ≈ n and M ≈ n2. We can

do the routing so that L is a constant. Therefore both (L− 1)D + 1 and L
√

M − L+ 2 are O(n),

which is the number of wavelengths required, since each node pair requires a separate wavelength

to communicate in this example.

10.13 Suppose there are K(x) lightpaths of length ≥ x hops. The average load due to these lightpaths,

say l(x), satisfies

xK(x)

M
≤ l(x) ≤ L

so that K ≤ LM/x. Assign LM/x separate wavelengths to these lightpaths. Next consider the

lightpaths of length ≤ x − 1 hops. Each of these intersects with at most (L− 1)(x − 1) other such

lightpaths, and so will need at most (L− 1)(x − 1)+ 1 additional wavelengths. So we have

W ≤ LM/x + (L− 1)(x − 1)+ 1

for every x. The minimum of the RHS occurs for x =
√

LM/(L− 1). For large L, the minimum

occurs for x ≈
√

M which corresponds to the case considered in the text.

10.14 For a two node network, the algorithm clearly uses only L wavelengths. Consider a network with

n nodes and maximum load L. Consider the (n−1) node network obtained by deleting node n and
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terminating all lightpaths that would have terminated at node n, at node (n− 1). This network has

load at most L, and by the induction hypothesis the greedy algorithm uses at most L wavelengths

for this network. Now consider the n node network. The lightpaths terminating at node n can

keep the same color that they were assigned in the (n − 1) node network; no conflicts occur since

these lightpaths share both the edge from (n − 2) and (n − 1) and the edge from (n − 1) to n and

no conflicts occur on the edge from (n− 2) to (n− 1). Suppose there are x such lightpaths, which

take up x wavelengths on the edge from n − 2 to n − 1. Then the lightpaths from node (n− 1) to

n are at most L − x in number since the load is L. Therefore the greedy algorithm can assign the

L− x remaining wavelengths to these lightpaths, and thus uses no more than L colors in all.

10.15 The above proof holds, except that in the last step, note that any algorithm that choses any available

color from a fixed set of L colors never runs out of a color.

10.16 The construction is as follows. Number the nodes in the ring starting at an arbitrary node 0, and

proceeding counterclockwise up to node N − 1. Define the following set of 2L− 2 lightpaths, all

proceeding counter clockwise along the ring between the two nodes listed below:

a1 = [0, N
2 ], a2 = [1, N

2 + 1], ..., aL−1 = [L− 2, N
2 + L− 2],

b1 = [N
2 , 1], b2 = [N

2 + 1, 2], ..., bL−1 = [N
2 + L− 2, L− 1].

Note that all the ai overlap on edges between nodes L − 2 and N
2 , all the bi overlap on edges

between nodes N
2 + L − 2 and 1, and each ai overlaps with each bi. Thus all of them must be

assigned separate wavelengths. The load can be seen to be L.

Now add an additional lightpath

c = [N
2 − 1, N

2 + L− 1].

Note that c overlaps with all the ai and bi and that the load is still L. Therefore 2L−1 wavelengths

are required to support these 2L− 1 lightpaths.

Note that for the construction to work, we must have

N
2 + L− 2 ≤ N − 1 or N > 2L− 1.

10.17 First consider the case when N is odd. Since (N2 − 1)/8 is an integer when N is odd, the fully

optical network of Example 10.4 uses (N2 − 1)/8 wavelengths to support this traffic (t = N − 1),

without wavelength conversion. (See Problem 10.6.) Thus (N2 − 1)/8 wavelengths are sufficient

to support this traffic, with or without wavelength conversion, when N is odd. From the solution

to Problem 10.7 (with t = N − 1) and (10.10), the average load on each edge is (N2 − 1)/8. Thus

(N2 − 1)/8 wavelengths are also necessary in this case, with or without conversion.

Now consider the case when N is even. Using the fully optical network of Example 10.4,

(N2 + 2N)/8 wavelengths are sufficient to support this traffic with no wavelength conversion.

From (10.10) with t = N − 1, the average load on each edge is N2/8. Thus dN2/8e wavelengths

are necessary to support this traffic.

Consider the case with full wavelength conversion where N is even. We give a construction

below that has a maximum load of

N2

8
+ 1

2
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when N is a multiple of 4 and

N2

8
+ 1

when N is not a multiple of 4. With full wavelength conversion, these also correspond to the

number of wavelengths that are sufficient to support this traffic. The construction works as

follows. Consider all 1-hop lightpaths between node pairs. These can be supported with a load

of 1 by routing the lightpaths along the shortest path between the nodes. Similarly, for k < N/2,

k-hop lightpaths can be supported with a load of k by routing them along the shortest paths. Thus

the total load due to all lightpaths of length < N/2 is

1+ 2+ ...+ N

2
− 1 = N2

8
− N

4
.

The only remaining lightpaths are the lightpaths between nodes that are diametrically opposite in

the ring, that is, those that are N/2 hops apart in the ring. For these lightpaths we have two choices

of routes. The routing is done as follows. The lightpath that starts at node 0 is routed clockwise

along the ring. The lightpath that starts at node 1 is routed counter-clockwise, the one that starts

at node 2 is routed clockwise, and so on. The reader can verify that this routing induces a load of

N

4
+ 1

when N is a multiple of 4 and

N + 2

4

when N is not a multiple of 4.

Thus considering all the lightpaths, the maximum load of this construction is

N2

8
+ 1

when N is a multiple of 4 and

N2

8
+ 1

2

when N is not a multiple of 4.

Observe therefore, that having wavelength conversion helps us to reduce the number of

wavelengths in this case. The overall results are summarized below:

No conversion Full conversion

Necessary Sufficient Necessary Sufficient

N odd N2−1
8

N2−1
8

N2−1
8

N2−1
8

N even
⌈

N2

8

⌉

N2

8 +
N
4

⌈

N2

8

⌉

N2

8 + 1, N = 4m

N2

8 +
1
2 , N = 4m+ 2
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10.18 Consider a 3-node star network with one lightpath between every pair of nodes. The maximum

load L = 2 but 3
2L = 3 wavelengths are necessary to perform the wavelength assignment. To see

this, observe that each lightpath shares an edge with the other two so that all three lightpaths must

be assigned distinct wavelengths.

10.19 Consider a ring network with load L. Cut it at any node, say node Z, to obtain a line network.

The lightpaths in this line network can be colored with W ≤ L wavelengths, since the maximum

load is L. However lightpaths passing through node Z are split into two (sub) lightpaths in the

line network and the two (sub) lightpaths may be assigned different colors. Say there are k such

lightpaths with colors (x1, y1), (x2, y2), . . . , (xk, yk) assigned to their two parts in the line network.

By using full wavelength conversion at node Z, wavelengths xi can be converted to yi and vice

versa, i = 1, 2, . . . , k. This allows the network to support all lightpath requests with load L ≤ W .

10.20 From Lemma 10.7 we have

W(N,L) ≤ L+W

(

N

2
, L

)

.

Add dummy nodes to the line network so that N is a power of 2. Then,

W(N,L) ≤ L+W

(

N

2
, L

)

≤ L+ L+W

(

N

4
, L

)

≤ L+ L+ L+W

(

N

8
, L

)

. . .

≤ (log2 N − 1)L+W(2, L).

Since W(2, L) = L, we have

W(N,L) ≤ (log2 N)L.

If N is not a power of 2, W(N,L) ≤ dlog2 NeL.

The algorithm is as follows: Divide the dlog2 NeL = kL wavelengths into k groups of L

wavelengths each. The nodes are indexed using dlog2 Ne-bit binary numbers, say x1, x2, . . . xk

where k = dlog2 Ne. Given a lightpath from node x = (x1, x2, . . . xk) to node y = (y1, y2, . . . yk),

find the least index i for which xi 6= yi . Use any available wavelength from group i for this

lightpath. The pseudocode for the algorithm is given below:

for (i = 1; i ≤ k; i ++) if (xi 6= yi) break;

for (w = (i − 1)L;w < iL;w ++) if w is available, break;

assign w to the lightpath.

10.21 Cut the ring network at any node. For lightpaths not passing through the cut node, say node Z,

dlog2 NeL wavelengths suffice since we can use the online wavelength assignment algorithm on
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the resulting line network. Allocate L additional wavelengths for lightpaths passing through node

Z and assign any available wavelength from this set to a lightpath passing through node Z. We

never run out of wavelengths since the maximum load = L means no more than L lightpaths pass

through node Z.

10.22

1

1

1

1

2 2

2

2

3

3 wavelengths 2 wavelengths

10.23 In a network using full wavelength conversion, a lightpath request is blocked if there is no free

wavelength on some link in the path. The probability that no wavelength is free on any given link

is πW . So the probability that there is no blocking on any of the H hops, using the link independent

property, is given by = (1− πW )H . Therefore,

Pb,fc = 1− (1− πW )H .

10.24 We have

πnc = 1−
(

1− P
1/W

b,nc

)1/H

.

For small P
1/W

b,nc (small Pb,nc and W not large), using (1− x)n ≈ 1− nx, for small x,

πnc =
P

1/W

b,nc

H
.

Also,

πfc =
(

1− (1− Pb,fc)
1/H

)1/W

.

Again, using (1− x)n ≈ 1− nx for small x, for small Pb,fc, we get

πfc ≈
(

Pb,fc

H

)1/W

.

The exact expression and the approximation for πnc are plotted versus the number of wavelengths

W , for various values of Pb and number of hops, in the plots below. The approximation consistently

underestimates the utilization so that the lower curve in each plot corresponds to the approximation.

It can be seen that the approximation is accurate only for W ≤ 5 or so, when Pb = 10−3. When

Pb = 10−5, the range of accuracy of the approximation increases to around W ≤ 10.
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The approximation for Pb,fc is so accurate for Pb ≤ 10−3 that the curves for the approximate

and exact expressions are indistinguishable. Hence these curves are not shown here.

10.25 The probability that a wavelength is free on link k, given that it is free on links 1, 2, . . . , k − 1, is

given by 1 − πn, by the definition of πn. (It only matters that it is free on k − 1.) Therefore, the

probability that a wavelength λ is free on link 1 is 1 − πn. The probability that it is free on links

1 and 2 is (1 − πn)
2. The probability that it is free on all H links is (1 − πn)

H . So the probability

that wavelength λ is not free is given by 1− (1− πn)
H . Thus,

Pb,nc =
[

1− (1− πn)
H
]W

.

10.26 (a)

Gb/s B C D E

A 2 3 1 2

B 1 4 2

C 2 3

D 1

(b) If we route each lightpath along its shortest path, starting from the top left of the matrix

above, and going down row by row, and assigning the lowest possible wavelength to each

lightpath, we get the following assignment:
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Lightpath Wavelength

AB 1

AB 2

AC 3

AC 4

AC 5

AD 1

AE 2

AE 3

BC 1

BD 1

BD 2

BD 3

BD 4

BE 5

BE 6

CD 1

CD 2

CE 3

CE 4

CE 7

DE 2

(c) The most heavily loaded link is DE, with a total load of 7, which is also equal to the number

of wavelengths.



11
c h a p t e r

Access Networks

11.1 Broadcast-and-select PON, laser transmitter

Received power= −14− 10 log N ≥ −40. Therefore N ≈ 400.

Broadcast-and-select PON, LED transmitter

Received power= −31− 10 log N ≥ −40. Therefore N ≈ 8.

WDM PON

Same as a broadcast-and-select PON.

WRPON, laser transmitter

Received power= −13−L ≥ −40, where L is the router loss, which depends on N . For N = 64,

L = 12 dB, which is still feasible here.

WRPON, LED spectral slicing

Here the router acts as a spectral slicer. Received power= −31− 10 log(2N) ≥ −40. Therefore

N ≈ 4.

11.2 Total bandwidth required = 20× 12 = 240 Mb/s. This cannot be supported by a single transmitter.

We could use two wavelengths (2 lasers) at the CO—one at 1.3 and the other at 1.5 µm. They

would be combined using a 1.3/1.5 coupler, and sent through the AWG. The AWG, because of its

periodicity, serves as a router for both the wavelengths. Each ONU would have a 1.3/1.5 coupler

to select one of the wavelengths.

77





12
c h a p t e r

Photonic Packet Switching

12.1 Pulse 1 is delayed by every one of the k stages for a total delay of

(T − τ )+ 2(T − τ )+ · · · + 2k−1(T − τ ) = (2k − 1)(T − τ ).

Note that the pulses not delayed by stage j are those for which the binary representation of (i − 1)

has a 1 in the j th bit (counting from right to left, starting from 1). Thus the total delay not

undergone by pulse i is (i − 1)(T − τ ). Therefore, pulse i undergoes a delay of

(2k − 1− i + 1)(T − τ ) = (2k − i)(T − τ ).

Assume that pulse 1 occurs at time 0, pulse 2 occurs at time T , pulse i occurs at time (i − 1)T ,

. . ., at the input. Then, at the output, pulse i occurs at time

(i − 1)T + (2k − i)(T − τ ),

whereas pulse (i − 1) occurs at

(i − 2)T + (2k − i + 1)(T − τ ).

The difference is

T − (T − τ ) = τ .

Therefore, the pulses are τ apart at the output.

12.2 We can arrange the timing of the pulses such that pulse i is delayed by those stages in which (i − 1)

has a 1 in its binary representation (counting from left to right starting from 1). Then pulse i

undergoes a delay of (i − 1)(T − τ ). Thus pulse i occurs at the output at time

(i − 1)T + (2k − i)(T − τ )+ (i − 1)(T − τ ) = (i − 1)T + (2k − 1)(T − τ ).
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Likewise, pulse i − 1 occurs at the output at time (i − 2)T + (2k − 1)(T − τ ), and the difference

between the two is T . Note that the switching time required is � τ , which is not feasible for

small τ .

12.3 Delay stage i, i = 1, 2, . . . k − 1, should be encountered if the binary representation of x has a 1 in

position i, counting from left to right, starting from 1.

Let b1b2 . . . bk−1 be the binary representation of x. Let b0 = 1. Then we have the following

truth table for c:
bi−1 bi ci

1 1 1
0 1 0
1 0 0
0 0 1

Thus ci = bi−1 ⊕ bi , where ⊕ denotes the exclusive or (XOR) operation.

12.4 We know that the transfer function of a 3 dB coupler is

1
√

2

(

1 i

i 1

)

.

If Ei denotes the field of the input pulse, then the fields of the clockwise and counterclockwise

pulses can be written as

(

Ec

Ecc

)

= 1√
2

(

Ei

jEi

)

.

If a phase shift φ is introduced between them, then

(

Ec

Ecc

)

=
1
√

2

(

Ei eiφ

jEi

)

.

After the second pass through the coupler,

(

EB

EA

)

= 1

2

(

1 j

j 1

)(

Ei eiφ

jEi

)

.

We have therefore,

EB =
1

2
(eiφ − 1)Ei .

If φ = 0, EB = 0. For |EB | = |Ei |, eiφ = −1 or φ = π .

12.5 The duration of the header is 80 bits at 1 Gb/s, that is, 80 ns. If the payload duration

must be 90% of the overall packet duration, it must be 9 times the header duration, or

9 × 80 = 720ns. At 100 Gb/s, the payload needs to be 720 × 100 = 72,000 bits, or 9000

bytes, long.

If the payload size must be limited to 1000 bytes, that is one-ninth, and the same efficiency

maintained, the header must be transmitted 9 times faster, that is at 9 Gb/s.
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The header duration is 80 ns. The guard time effectively increases the header duration by

1000 ns to 1080 ns. To maintain an efficiency of 90%, the payload duration must be 9

times larger, that is 9720 ns. At 100 Gb/s, the payload is thus 9720× 100 = 972 000 bits,

or 121,500 bytes, long.


