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s Preface

In many cases, the problems in the book require further exploration of the topics in detail as opposed
to simply plugging numbers into equations. Instructors may therefore want to review the solutions
before assigning problems. See the book’s web page hitp://www.elsevierdirect.com/9780123740922
for the current errata of the book, as well as this solutions manual. If you discover an error that
is not listed there, we would very much appreciate your letting us know about it. You can email
rajivramaswami@ieee.org, or kumar@tejasnetworks.com or galens@bawaii.edu.

Note that all equation and figure numbers used in this manual refer to those in the third edition

of the book.
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mmmmmmmm  Propagation of Signals in
mmmsssmm  Optical Fiber

2.1 From Snell’s Law we have,
no Sin%nax =n1 Sih@{nax.
Using the definition of 67" from Figure 2.3, we have
nisin (/2 — 67") = no,
or,

ni COSG{“aX =no,

or,
2
sno™ = [1— n—g
n
1
Therefore,
1— 2
nosin%naxznl an = n%—n%
g
which is (2.2).
2.2 From (2.2),
§T  1n?
LA N 10 ns/km.
L cno
Therefore,
8T
n%A . .

L



PROPAGATION OF SIGNALS IN OPTICAL FIBER

We have,

NA =nivV2A = /2npcéT/L = V2 x 1.45 x 3 x 105 x 10-8 = 0.093.

The maximum bit rate is given by

0.5

= 2.5 Mb/s.
(10 ns/km x 20 km) °

2.3 We have

oD
VxH=J4+—.
ot

Using J = 0 and taking the curl of both sides, we get

dVxD) d(V x P)

VxVxH= — (VX E
v Jt azGO( x )+ Jt

Here we have used the relation D = ¢gE + P. Using (2.13), this simplifies to

2B 3(V x P)

VXxVxH=—e—
02 ot

Taking Fourier transforms, we have

VxVxH = eowzé—iw(Vxﬁ)
= EowzuoI:I —iwegk (V x E)
= eow’noH — iweoj (iwpoH)
= eopow’(L+ ) H = eopow?n?(w)H

(,()2}’12 ~
2

Using V x V x I:I:V(V-FI)—VZI:I,weget

2~ (,()27’12 ~ ~ .
VH+—2H:V(V-H):O, since V- B =0.
c

2.4 Using & a,/n? — nZ < 2.405,

2na 2ma
Acutoff = > 405 ‘/n% — n% ~ > 05 niv2A.

For a =4 um and A = 0.003, Acutoff = 1.214 um, assuming n1 = 1.5.

2.5 (a) We have

2ra [, 5
Acutoff = —2'405 ny —ns.



Using a = 4 um, np = 1.45, and Acuioff = 1.2 um yields

2.405 x 1.2\?
np= (S22 %) 41452 = 1.45454,
2xmT x4

Therefore 1.45 < ny < 1.45454 for the fiber to be single moded for A > 1.2 um.
(b) We have

2ra [, >
V:T nl—nz.

Using a = 4 um, A = 1.55 um, np = 1.45and V = 2.0, we have

Vi )2
2
= — = 1.4552.
i <2na> 2

Using

0.9960\ 2
h(V) ~ <1.1428— )

we obtain 5(2.0) = 0.41576. We also have

b— ngs — ”%

n% —n3
Therefore, we can calculate ner = 1.45218. Thus

2n

g =" _ 5887 /um.

2.6 The specified nominal value of @ must satisfy
27 (1.05a)
A ——— n1v/2 x 1.1 x 0.005
cutoff < 2405 ni X X

for Acutoff = 1.2um and ny = 1.5. Thus the largest value that can be specified is

1.2 x 2.405
a =
27 x 1.05x 1.5 x /2 x 1.1 x 0.005

Note that we have used the property that Aqyoff increases with increase in a or A so that the largest
possible values of @ and A are used in calculating the cutoff wavelength.

= 2.78 um.

2.7 We have
94 1, %A _
9z | 2772 T

Taking Fourier transforms, we get

A i .

= + izﬂz (—iw)?A =0, or,
9A iﬂzwzfizo.

0z

Solving this for A(z, w), we get

n 2
A(z, w) = A(O, w) exp |:z,322a) z:| .
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Note that
o0 o
A0, w) = / A0, el dr = / Age 21218 oiot gy
—00 —00
® 1 (2 _y 2
_ AO/ . 5 (Toz 2iwt+(iwTp) ) e%(inO)Z dt
—0oQ
o
2
= Age T3/ / e_%(%o_iwro) dt
—00
= Aoe_“’zTOZ/z,/erToz.
Therefore,

o 2
Az, w) = AoTov 2me~’15/2 exp (il'Bszz> .

Using this, we obtain

A T w2T2 i w2 .
Az, 1) = —/ A(Z w)e” o dogp = —— 070 _Toezz 2 it g,

3

_1 _ (it)
AoTo . 2|:w( 1/322)+21wt+ ﬁzk] —12/2(T02—i/32z) dow

H

3

2
1 2 T2_. it
_ AoTo , 2( w?(T¢—ipoz)+ /—Toz_iﬁ) e—tZ/Z(Toz—iﬂzz) do

N

2

2 L2 s it

AoTo —57— [ -3, —zﬂzz><w+—.>

— 0fo e 2(7‘571/322)/‘ e 2270 Tgﬂﬁzz dw
LY, 2 —00

— AOTOe—tz/Z(Toz—iﬁﬂ) 1

JIE —ipaz

Note that in the last step we used the formula given in the problem with

1 To+ipax

o = - =
To—ifaz T2+ B3z2
with
Tt
Re(a) = 0

——>0
T02+ﬁ§z2



2.8 From (E.8), we derive (E.9) and (E.10) as discussed in Appendix E. (2.13) now follows from (E.10).
2.9 From (2.28), with « =0,

_ 2
Ay = _AoTo exp( 1 (= p22) )

VT5 — iz 213~ if20)

which is the envelope of a Gaussian pulse for all z. Letting ' = r = B1z (so that we choose a
reference frame moving with the pulse), we have

AoT 1 12
AGt) = $e"p< ti)

17 —ipsz  \ 2 (T§—if2d)

AoTo 1 12(T¢ + iB2z)
= T\ )
JIE —iBoz Ty + (B22)
The phase of this pulse is

, Bozt?
2Ty + (B22)d)

Hence the chirp factor is, comparing with (2.26),

o PRTE _ Bt/TE  sen(Ba)z/Lo
T4 2 2 2"
BT () 1 ()

2.10 A Gaussian pulse is described by
At) = Age 215

Its rms width is given by

7o 2IA)|? dt
Trms — .
[0, 1A@®)|2dt

We have

OO 2 2 272 ToAg 2
/ |A(1)|%dt :/ Ade /T dt = V2 —20 = To /T A3,
o o NG

and

/ 2| A()|2dt = A2 / 2e 175 4y = A2=L or 2
o o /2 2
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Therefore,

2
Trms TO _ TO

> =

S

2.11 From (2.13),

2 2
Tl _ KP2z Baz
2ol - ()

For positive « and negative 2,

L A A
To Lp Lp) "~

(a) Differentiating the equation above, the minimum pulse width occurs for z = zmin which

solves
KZ Z
—k(1-— — =0.
K ( LD> + b
This yields
in=—— Lp.
Zmin 1+K2 D
For « =5,

5
(b) The pulse width equals that of an unchirped pulse if
2 2 2
Kz z z
1- 2% =) =14 (),

( LD) +<LD> +<LD>

that is, if
2Lp

i=—"

For k =5, we get z = 0.4Lp.
2.12 We leave this to the reader to go through the algebra and verify.

2.13 For a first order soliton,

ne— Yy
|Bal/ TE

Using y = 1/W-km, 2 = 2 ps?/km, and Py = 50 mW,

v Po

Recall that a soliton pulse is described by

h A 2
SN T ) T e tTo x ot/To



(neglecting the phase and considering a reference frame moving with the pulse). The half width at
half maximum is given by the solution to

2
t 1 t 1
h — = — h— = —.
[Sec <To>} 2 R T 2
Solving this yields r = ToIn(v/2 + 1). Therefore,
TrwaM = [2In(«/§+ 1)] To = 1.763Tp.

Using Tp = 6.32 ps, we get Trwgy = 11.15 ps. Therefore,

< @ X i Gb/s = 8.97 Gb/s,
11.15 10

where we have used the condition that the bit period > 10 x Trw g -
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mmmmmmmsm  Components

3.1 Using (3.1), we can write

En _ ifl coskl isinkl Ei1
En | isinkl coskl Ei» )’

Note that kI = /4 for a 3-dB coupler. Using this and ignoring the common phase factor e ~#!,
we get

(52)-7 0 0)(z)
E»2 V2 \i 1 Ei2 )’
The traversal around the loop introduces the same phase change in E,1 and E,», which can be
ignored. Thus E}; = E,2 and E/, = E,1.

The directional coupler is a reciprocal device. Therefore, the transfer function is the same if the
inputs and outputs are interchanged. Thus

ELY _ 1 /1 ELp\_1 /1 i 1 Eil
E,) — J2\i 1 E,) 2\i 1 1 Ei2
_ 1. 2i O Ei1 _ Ei1
2\ 0 2 Ez ) \En )

Thus, E/; =i E;; and E/, =i E;j». Therefore, the input field is reflected (with a phase shift) and
the device acts as a mirror.
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3.2

3.3

3.4

The scattering matrix is given by

0 O s13
S = 0 O s23
§31 8§32 833

If the device satisfies the conservation of energy condition, then S”S* = I. In this case, we would
then have

0O 0 s3;n 0 0 s
0 0 s3 0 0 s3 | =1
$13 $23 33 S S S

This implies that |s31]2 = 1 and |s32|> = 1. Also 53153, = 0, which implies that either s33 = 0
or s32 = 0, both of which would contradict the previous condition. Therefore the device cannot
satisfy the conservation of energy condition.

We have

STs* — ( S11 0 ) ( SIl SIZ >
s12 §22 0 s
Assume that S”S* = 1. Then |s11/2 = 1 and s1187, = 0. If 5120 # 0, that is, power is transferred
from port 1 to port 2, s11 = 0, which is a contradiction.

We assume the pitch of the grating, a, is small compared to the distance from the source or imaging
plane to the grating plane. Thus the rays from A to both the slits can be taken to be approximately
parallel. The same goes for the rays from both the slits to C. Then the difference in the path lengths
ADC and ABC is

ED—BF =~ asn6; —asné,

= a[snb; —sing,].
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3.5

3.6

3.7

3.8

The grating equation is:
d(sing; +sinf;) = NA

where 6; and 0, are measured with respect to the vertical axis in Figure 3.11. (The blazing angle
is also measured with respect to the same axis.) d is the periodicity of the grating (in the horizontal
axis in Figure 3.11).

The derivation is similar to that of the transmission grating in the text (Figure 3.10): The
path length difference between rays incident on successive slits is d Sing; and that between rays
diffracted from successive slits is d sin6;. The path length differences add (rather than subtract as
in Figure 3.10) due to the reflective nature of the grating and the way the angles are measured.

However, the maximum energy is not in the zeroth order but in the order corresponding to
ordinary (specular) reflection, namely, the order which satisfies ; — « = 6; + . For normal
incidence, ; = 0 and the maixmum energy occurs in the order at the angle ; = 2a.

Assume the slits are located at +d /2, +3d/2, ..., (N — 1)d/2 and N is even. Then, the diffracting
aperture can be described by

N-1
fO == Y G —kd/2)+5(y+kd/2).
=13,...

1
Ny
From (3.11), the amplitude distribution of the diffraction pattern is

A(0) N-1
AO) = —— Y (exp—2risinOkd/2\+ exp2risinokd/2))

k=1,3,...

. 2msing Nd
A(0) Sin T2 =%

2rsinf d
A2

N dn

A(9) has maxima when 0 satisfies d SN = mA, for some integer m.

As N — oo, A(0) — A(0), if d Sin9 = mA, for some integer m, and A(0) — 0, otherwise. Thus,
in the limit of an infinite grating with narrow slits, we get narrow lines of equal amplitude in the
diffraction spectrum at the angles corresponding to each grating order.

The resonant frequencies correspond to the maxima of the transfer function

1
Trp(f) =

1+ (% Sin(27rft)>2

which occur when sin(2rft) = 0 or 2nft = km, where k is an integer. If the resonant frequency
fo corresponds to kg, then
ko
Jfo= Z,

and the separation between adjacent resonant frequencies is Af = %, which is a constant.

We have waves that make 1 pass, 3 passes, 5 passes, ..., through the cavity before leaving the
second mirror. Adding up the contributions by each of these waves, we get the amplitude of the
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3.9

output electric field as

o0
. . k
Eo=(1—A—-REe Y (R e—'zﬁl) .
k=0
Note that

. 2mnl

pl=—

= fr.
From the above, the field transfer function is given by

Eo  (1-A—Re
Ei 11— Re—i2fl

The power transfer function Trp(L) is

2 (1-A-R?
" 1+ R?—2Rcos28l’

Eo
Trp(M) = |—

E;

Writing cos2pl = 1 — 2sin? 1 and simplifying, we get

(1)’

Trp(X) = 5
1+ (3% sinpi)

The transfer function of the Fabry-Perot filter is (ignoring absorption)

1
()=

1+ (34 Sinanr)Z.

In Problem 3.7, we derived the free spectral range (FSR) to be % We have T(f) = % for f

satisfying g sin2rft = 1. If f’ is the smallest value of f for which this is satisfied, then the

full-width half maximum FWHM = 2f’. For R close to 1, thatis, 1 — R <« 1, f’ satisfies

1-R 1-R
sn2rnf'tr=—= or 2nflt~—.
! 2V R f 2V R
Hence
1-R 1
fl=—=—F7 —
2JR 2nt’

Therefore, the finesse F, which is the ratio FSR/FWHM, is given by,

, _ _FSR _(i)/Z(l—R)
T FWHM \2r 277(2v/R)
nvR

1-R
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3.10 The fraction of transmitted energy is

3.11

3.12

o _ s Ter(H df
=% —C -
2o Trp(0) df
Since the transmission spectrum is periodic, we consider only one FSR to determine the fraction of

transmitted energy. We also assume the absorption is negligible so that A = 0. Denoting ft = x,
the fraction of transmitted energy is given by

/0'5 dx
t =
2
-5 (1 +(3E sin@rx)) )
1

4R
\ 1+ (1-R)?

1-R

1+R
The FP filter with cavity length I;, i = 1, 2, has a power transfer function,

1
(1 n (% Sin(27rfri))2)

where 1; = [;n/c where n is the refractive index of the cavity, and c is the free space velocity of
light. The transfer function of the cascade is

Ti(f) =

T(f)=Ti(HT2f)

since reflections from the second cavity to the first, and vice versa, are neglected. The maxima of
T (f) occur for these values of f which are maxima of both T1(f) and T2(f). Thus the FSR of the
cascade is

FSR = LCM(FSR1, FSR»)

where FSR; = ¢/2nl; is the FSR of the filter with cavity length /; and LCM denotes the least common
multiple. Since l/1/I2 = k/m and k and m, are relatively prime integers,

FSR = LCM(FSR1, FSR») = kFSR1 = mFSRo.

<~ =

ni no n3

Let —27;”1 =X.

7 n3COSx + inzsSinx no (n2C0Sx + inzSinx
12 = 2 X - = — " . .
g N2 COSx +in3sSnx np \n3Cosx +inzS8Nx
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3.13

Z12—1n1  (n2€0Sx + in3Sinx)ny — na(n3CoSx + in2 SiNx)

P = = ; - ; -

Z12+m (npc0Sx + in3zSinNx)n1 + n2(n3CoOSx + ino SiNXx)
i (n% - n%) sinx )
= — 5 N (using n1 = n3z).
2n1in, COSx + i (”1 + n2) Snx
Therefore,
HJ
B |,0|2 _ (n% — n%)zsm X

B dntnd cos? x + (n? + n%)zsinzx
(2n2)(2n3) Sin? x + 4n?n3 cos? x
4nln2 cos? x + (n1 —i—nz)2 sin? x

1 1

2t ] 2_,202 :
cos2x + 4 2"22) sn?x 14 U g2y
an 4nins

The transfer function of a Fabry-Perot filter with v R = "2~ is (using (3.10))

na+ny
1 . 1
2 - 2_ . 2\2
2(np—ny) (np+n1) i a2 (n1—n3)* .2
1+[ @) @n2) ] snx 1475 Sntx

which is identical to the expression above.

We only find the reflectivity at Ag. For the reflectivity as a function for A, see M. Born and E. Wolf,
Principles of Optics, 6th edition, Pergamon Press, Oxford, 1980, Sec. 1.6.5, pp. 66-70.

We assume the surrounding medium is glass with refractive index ng and intrinsic impedance
nG = no/ng. Denote ny = no/ny and n = no/nr. Then, by repeated application of (E.2), using
nygl/do=nrl/ o = 1/4, we have,

Zr (o) = NG,

Zu,(ho) = ’7%/’76,
Zr am (o) = (u/n)*ne.
Zram (o) = (u/n)* 0,
Zmi,(h0) = (% /77H nG,
Zomy(ho) = (u/n)*ne.

Thus the reflectivity of the stack at A is

2
| Zou, —ncl? (1= (np/nm)*
|ZGu, + 1612 \ 1+ @mp/nm* )

lp(r)|? =

Since ny < ny, for large k, the reflectivity is almost unity. Thus a stack of alternating high and low
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refractive index dielectrics which are a quarter-wavelength thick at Ag, acts as a highly reflective
mirror at Ag.

3.14
Input 1 Output 1

Eilm Eolm Eily(ﬂ Eol/m
\ ! ’ Path length, L \ ! ’

Path length, L + AL

Input 2 Output 2

Since the directional couplers are 3-dB couplers, from (3.1), with «I = (2k + 1)7/4, for some
integer k,

(Eél(ﬁ) _ e (1 i) (Eil(f))

E/(f) V2 \i 1)\ EnfNH)

<El{1(f)) _ ifL < 1 ) (E,/,l(f))
E,(f) e AL JNE () )

(Eol(f)> e (1 i) (Efl(f))
Ex(f)) V2 \i 1)\EN)

Muliplying the above transfer functions,

Ea(f)\ _ e 2P (1 —e7iBAL 4 jemPAL N [ E(f)
Eyo(f) 2 i4ie AL _1 4 7IPAL J\ Ein(f) )

If only one input, say input 1, is active, then E;2(f) = 0 and

Eot(f)\ _ e 2Pl (1 pmifALYN
<E02(f)>_ 2 <i+ie—iﬁAL)Ezl(f).

The power transfer function is

<|E01(f>|2/|E,-1<f>|2) 1 ((1— CoSBAL)? + SinZﬁAL)
|Eo2(f)1?/|Eir(f)I? 4\ (1+cosBAL)? +sn? BAL
_ 1(1-cosBAL\ _ (sSin?BAL/2
~ 2\1+cospAL ) \cos?BAL/2)"
3.15 (a)
/'AL3
ALZ
/ \AL3
ALI
\ /AL3
ALZ
\Ms




16

COMPONENTS

3.16

Assume that the frequencies are spaced at fo + iAf, where i = 0,1,...,n — 1. Let
n = 2K, Choose neff and ALy such that 27 fonef AL1/c = km, for some integer k, and
2rnegt AfAL1/c = m. Then the top output of the first stage contains the frequencies
fo+ Af, fo+ 3Af, fo+ 5Af, ..., and the bottom output fo, fo + 2Af, fo+ 4Af, ...
Choose ALy = AL1/2, ..., ALy = ALy/2* L,

The choice of ALy only determines the periodicity of the filter. The absolute set of
frequencies must be chosen by appropriately varying nes. The ngt for the filters in each
stage must be different in order to accomplish this. For example, in the second stage, the
top filter must satisfy 27 (fo + Af)netAL1/c = kx, for some integer k, and the bottom
filter must satisfy 27 fonef AL1/c = km, for some integer k. However, the ne differences
are slight if Af <« fop which is usually the case. Slight changes in nef can be effected by
heating or by applying a voltage (electro-optic effect).

If only one frequency is required, retain only the k MZIs that the desired frequency passes
through, in the above construction.

Grating circle

Rowland circle

Arrayed waveguide

Input waveguide

(xoa }’o)
(x, ) bV
0
0,0)l¢ >
R

Let R be the diameter of the Rowland Circle. Then,

x0 = R cosé cosd = R cos0,

yo = Rcosfsing,

y = Rsing ~ R¢ (for small ¢),

x = R(1—cos¢) = 2RSIN? (¢/2) ~ 2R(¢/2)? (for small ¢)

~ y2/2R.
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3.17

3.18

Therefore,

o -2+ (o—y? = (f+y8) +x+y* = 2xx0 - 2yy0
= R%c0s%6 + y? — y?cos’6 — 2yRcosf sinf  (assuming x° < y?)
= (Rcos — ysing)>.
(The assumption x? <« y? amounts to assuming that R is much larger than the length of the arc
on which the arrayed waveguides are located.) Therefore, the distance from (xo, yo) to (x,y) =
Rcos® — ysing. If input waveguide i is at an angle ; to the central arrayed waveguide and two

successive arrayed waveguides are spaced apart vertically by d, the difference in the distances from
input waveguide i to these arrayed waveguides is

(Rcost; — ysing;) — (RcosH; — (y +d)sing;) = dsing;.

Using the notation in the book, df" = R cosé; and 811:” =dsing;.
If

pe _ (p+ e
f o

then FSR = f/ — f (one period of the transfer function). Therefore,

nlél’:" +naAL + n18?”’ =pl=

FSR  — (p+ Dec B pc

n15f" +noAL + n15?m n15f" +noAL + n15?m

c
nléf” +npAL + nléj?’”'

Using the result of Problem 3.13, §/" = dsin¢; and 39" = dsing;, where d is the vertical spacing
between the arrayed waveguides, ; is the angular separation of input waveguide i and the central
arrayed waveguide, and 6; is the angular separation of output waveguide j and the central arrayed
waveguide. Therefore,

FSR = — ¢ .
n1d SNB; + n2AL +nid Snf;
Ifd < AL,
FSR ~ — .
n2AL

Consider an N x N static router of the type shown in Figure 3.22. Using the result of Problem 3.13,
from input i, the wavelengths satisfying

n1d sing; + npAL + n1dsing; = pi

for some integer p are transferred to output j.
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We assume that the angular separation between successive input and output waveguides is Af.
Then we take

—~-(N-1) —(N-3 N-1
6, =iN6, 6, = jAb, i, j = ( ) = ),---,—1.0,1,---< 5 )

2 2
Here we have assumed that N is odd for simplicity. Thus the inputs and outputs are numbered
from # to (N—gl)

Let Ago be the wavelength that is transfered from input O to output 0. Thus Ag satisfies

proo = n2AL. The wavelength 2;; that is transferred from input i to output j satisfies, assuming
the 6; and 6; are small,

nid(i + j)AO +naAL = phij.

-2 —4=1 2
=3=2
—1 -1
0 0
1 0=5 1
4
2 2

By renumbering the wavelengths, the static router can be assumed to use wavelength A+ jy mod ¥
to connect input i to output j. The figure above shows the renumbering for N = 5. Thus if
(i +j) < O, the wavelength used is A;4 j 1 v. For example, input —2 uses wavelength -2—-2+5=1
to connect to output —2. Thus A9 must satisfy

nid(i + j)AO +naAL = phk; and
nid(i +j + N)AO +naAL = (p+1) A
Therefore,
n1idNAO = Ajj.

When the FSR is independent of the input and output waveguides, n1d(i + j)AO <K n2AL and
phij ~ naAL, for all i, j. If fij = ¢/Aij and fij + Af = c¢/Ait1,; are adjacent frequencies, using
this approximation,
Af PC  1dA6
= ————n
(n2AL)2"
pe Aij
(noAL)2 N
pAijc
N(naAL)?
c

= — i Aii &~ naAL
N2AL) (using pi;; ~ n2 )
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3.19

3.20

3.21

FSR
N

Thus the N frequencies must be chosen to be equally spaced within an FSR.

We choose the FSR as 1600 GHz which is the minimum possible value. Since FSR = ¢/n2AL,
assuming np = 1.5, AL = 125 um is the path length difference between successive arrayed waveg-
uides.

If the center wavelength is denoted by Ao, n2 AL = pAg for some integer p, called the diffraction
order. Thus pig = ¢/FSR = 187.5 um. Choosing p = 120, Ao = 1.5625 um. From Problem 3.15,
the spacing between successive frequencies is

pc

= _P¢ _ane.
f = an™

Using the values Af = 100 GHz, p = 120, AL = 125 um, and ny = np = 1.5,d A0 = Afp)%/cnl =
0.0651 um. Assuming the vertical spacing between successive arrayed waveguides, d, is chosen to
be 25 um, A0 = 2.6 x 1072 radians. If the spacing between successive successive input or output
waveguides is Ax = A0/R = 25 um, we get R = 9.6 mm for the diameter of the Rowland circle.

The transfer function of the AOTF is

sin? (me)

T(An = 1+ (2A4/A)2

Numerically solving
T(AX)/T(0) = 0.5

yields
Al =~ 0.39A.

Hence the FWHM bandwidth of the filter is
~ 0.78A ~ 0.8)3/1An.

Recall that a polarizer is a 2-input, 2-output device that works as follows. From input 1, the light
energy in the TE mode is delivered to output 1, and the light energy in the TM mode is delivered
to output 2. Similarly, from input 2, the light energy in the TE mode is delivered to output 2, and
the light energy in the TM mode is delivered to output 1. Thus the input polarizer delivers the
energy in the TE mode at all wavelengths from input 1, and the TM mode at all wavelengths from
input 2, to the upper arm of the AOTE. Similarly, the input polarizer delivers the energy in the
TM mode at all wavelengths from input 1, and the TE mode at all wavelengths from input 2, to
the lower arm of the AOTE. For the wavelength satisfying the Bragg condition, in the two arms of
the polarization-independent AOTFE, the light energy undergoes mode conversion, from TE to TM,
and vice versa. The output polarizer combines the energy in the TE mode from the upper arm, and
the TM mode from the lower arm, and delivers it to output 1. Similarly, it combines the energy in
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the TM mode from the upper arm, and the TE mode from the lower arm, and delivers it to output
2. Thus all the energy at all the wavelengths, except the one satisfying the Bragg wavelength, are
delivered from input 1 to output 1, and input 2 to output 2. Since the energy from the signal at
the Bragg wavelength undergoes mode conversion in the two arms of the AOTE, this wavelength
is combined by the output polarizer into the “other” output, that is, the signal from input 1 is
delivered to output 2, and the signal from input 2 is delivered to output 1. Thus the wavelength
satisfying the Bragg condition is exchanged between the two ports.

Multiple wavelengths can be exchanged by launching multiple acoustic waves simultaneously,
and the AOTF acts as a 2-input, 2-output wavelength router.

3.22 o= 1.55um. We take An = 0.07. From the solution of Problem 3.17, for a FWHM of 1 nm,

3.23

l

0.8 x 1.552

2OX 299 A 27.5 mm.
103 x 0.07 ™ i

» From the given specifications, we require a free-spectral range (FSR) of > 1600 GHz. For a

FP filter, the FSR is given by 1/2t. Thus 7 < 1/3200 ns. Take t = 1/3200 ns. We assume
the absorption loss A = 0 and use (3.10) for the power transfer function of the FP filter.
For a 1-dB bandwidth > 2 GHz, Trp(1) > 10701 = 0.794. Solving for R using (3.10),
we get, R < 0.992312, implying the finesse of the filter should be < 7+/R/(1 — R) ~ 407.
For a crosstalk suppression of 30 dB from each adjacent channel which is 100 GHz away,
we must have, Trp(100) < 10~3 = 0.001. Solving for R using (3.10) yields R > 0.987652,
or a finesse > 253. Thus, to satisfy, the given passband and crosstalk requirements, the
reflectivity R must be chosen in the range (0.988, 0.992), for example, 0.99.

When the center frequencies are allowed to shift by 20 GHz from their nominal values,
and the filter is not tunable, it is impossible to satisfy the crosstalk suppresion requirement

of 30 dB. To see this note that we must have
Trp(80

) -3
Trp(20) < 1077 = 0.001.
The ratio Trp(80)/Trp(20) decreases monotonically with increasing R; however it is
bounded below by a value of 0.0625. To see this approximate sin[2rfr] ~ 2nf7t,
since T is small, so that the FP transfer function is of the form (1 + x2f%)~! where
x =2v/R/(1— R)2nt. Thus

Trpp(80)  1-+400x2

Trp(20) 1+ 6400x2
which is a monotonically decreasing function of x? bounded below by 400/6400 = 0.0625.

If the FP filter is tunable, which is the case in some networks, for example, the broadcast-
and-select Rainbow network of Chapter 7, then a crosstalk suppression of 30 dB under a
center wavelength drift of 20 GHz translates to a crosstalk suppression of 30 dB from
a channel which is 60 GHz away since the desired channel and the adjacent channel can
drift by 20 GHz in opposite directions. Proceeding as above, this yields R > 0.992573, or a
finesse > 421. Since the requirement of a 1-dB passband of 2 GHz yields R < 0.992312, or

a finesse < 407, the two requirements cannot be satisfied simultaneousy. However, a filter

with a finesse in the range 410-420, nearly satisfies both requirements.
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» For an n-stage Mach-Zehnder interferometer, the transfer function is given by,
n
Tuz(f) = [ | co?(@ 1z f/FSR).
k=1

where 7f/FSR = BAL/2 = mnegiAL/A, or FSR = ¢/negfAL. The minimum required
FSR is 1600 GHz. If we choose this FSR, and n = 4, the nulls in the tranfer function
are 100 GHz apart, which is the nominal interchannel spacing. We assume a 4-stage filter
so that the crosstalk suppression can be made very large, in the absence of frequency
drifts. For an FSR of 1600 GHz, nefAL/c = 1/1600ns. For negi = 1.5, this yields,
AL = 0.2/1600 m = 125 um for the path length difference of the first stage. The 2nd, 3rd
and 4th stages have path length differences of 250, 500 and 1000 pm, respectively.

At 1 GHz away from the center frequnecy, the transfer function is Tjsz (1) = 0.999672 so
that the requirement of a 1-dB bandwidth larger than 2 GHz is easily satisfied. The null at
100 GHz is very sharp since Ty;z(90) = 0.012 and Ty;z(110) = 0.008. This already suggests
that the filter design may not be possible in the presence of a frequency drift of +20 GHz
which is indeed the case. To see this note that increasing the FSR will make the crosstalk
suppression worse since, relative to the FSR, the interchannel spacing will be smaller. So
we use the minimum FSR of 1600 GHz. For this FSR, if we use 6 stages, the nulls occur
25 GHz apart. We cannot use more stages since the center frequency of a channel may then
drift into a null of the transfer function. For 6 stages or fewer, numerical calculations of
Tuyz(20)/ Ty z(f') where f' € [80, 120] GHz show that a crosstalk suppression of 30 dB is
not achievable.

If the filter is tunable, a crosstalk suppression of over 30 dB can be achieved by using an
8-stage filter with an FSR of 1600 GHz. The worst-case crosstalk of 30.3 dB occurs when
the adjacent channel is 65.565 GHz away from the desired channel. The 8-stage filter also
satisfies the 2 GHz 1-dB bandwidth requirement.

n In the case of the AOTE the transfer function nulls are not spaced equally apart in fre-
quency, as in the case of the multistage MZI. So we cannot design the filter with a low
crosstalk suppression (in the absence of frequency drifts) by making the transfer function
nulls coincide with the channel positions. (Far away from the main lobe, the nulls are
approximately equally spaced in wavelength.) Since the first side lobe is less than 10 dB
below the main lobe, this suggests that for a filter meeting the specified requirements, the
adjacent channel must occur after several transfer function nulls. This is indeed the case
and a filter can be designed (in the absence of frequency drifts) as follows.

We note that
sin? ((n/Z)‘/l T (ZAA/A)Z)

Taorr() = 1+ (2AL/A)?
In the 1.55 um band, a spacing of 100 GHz ~ 0.8 nm. Solving 7'(0.8) = 1073 yields,
0.8/A = 15.8035 or A = A(ZJ/ZAn = 0.8/15.8. Assuming An = 0.07 and Ao = 1.55 um
yields I ~ 68 cm. For an integrated optics AOTE, this is a highly impractical value of I,
which again illustrates the poor crosstalk suppression capabilities of the AOTF compared
to other structures. However this (impractical) filter does satisfy the 2 GHz 1-dB bandwidth
requirement.

In the presence of frequency drifts, similar problems arise as in the FP and MZI struc-
tures, and the filter design is impossible. In the tunable filter case, the crosstalk suppression

<1+ AL/ AP =T'(M).
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of 30 dB must now occur for a worst-case spacing of only 60 GHz which makes the required
value of [ even larger at 113 cm! In this case the 1-dB bandwidth is slightly less than the
required value of 2 GHz; the transfer function is 1.25 dB down at 1 GHz on either side of
the center frequency.
Note that none of these filters are capable of handling a variation of 20 GHz in the channel
positions. In practical applications, the passband shape is engineered to have a flatter top and
sharper skirts to meet this requirement.

3.24 (a) Structure of Figure 3.14(b):
The loss for a dropped channel = 1 dB (first pass) + 1 dB (second pass) = 2 dB.
The loss for an added channel = 13 dB (input coupling loss of 5% tap).
The loss for a passed-through channel = 1 dB (first pass) + 0.5 dB (grating loss) + 0.2 dB
(coupling loss) = 1.7 dB.
Power of a passed-through channel = —15 dBm — 1.7 dB = —16.7 dBm.
For the added channel to have the same power, it must be transmitted at = —16.7 dBm +
13dB = —3.7 dBm.
(b) Structure of Figure 3.14(b) cascaded:
Dropped channel worst-case loss = 1.7 dB x 3 (three passes-through) +2 dB = 7.1 dB.
Dropped channel best-case loss = 1.7 dB x 0 (no passes-through) +2 dB = 2 dB.
Added channel worst-case loss = 13dB + 1.7 dB x 3= 18.1 dB.
Added channel best-case loss = 13 dB + 1.7 dB x 0 = 13 dB.
Pass-through channel worst-case and best-case loss = 1.7 dB x 4 = 6.8 dB.
(c) Structure of Figure 3.82:
For this structure, the best-case and worst-case losses are the same.
Dropped channel worst-case loss = 2 dB + 6 dB (splitting loss) +1 dB (filter) = 9 dB.
Added channel worst-case loss = 6 dB (combining loss) +10dB (input coupling loss)
= 16 dB.
Passed-through channel worst-case loss = 1dB (circulator pass) +2 dB (grating pass)
+0.5 dB (output coupling loss) = 4.5 dB.
Comparing with the results of (b), we see that the structure of Figure 3.60 has a lower
worst-case loss for the added and passed-through channels. Moreover the loss is uniform.

(d) The costs of the two structures are compared in the following table.
Figure 3.14(b) Figure 3.60

cascaded
Fiber grating $2,000 $2,000
Circulators $12,000 $3,000
Filters - $4,000
Splitters/combiners - $200
Couplers $400 $100
Total $14,400 $9,300

Thus, from the cost viewpoint also, the structure of Figure 3.60 is better.

3.25 Conduction band electrons in a photodetector do not absorb incident photons since there are no
higher energy levels or band to which they can be excited.

3.26 (a) See Figure 3.34. To minimize ASE, pump in the forward direction. To prevent back
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3.27

3.28

3.29

reflections at the input add an isolator at the amplifier input.

(b) See Figure 3.35.

(c) 1532 nm corresponds to 195.82 THz. 1550 nm corresponds to 193.55 THz. The total
bandwidth available is therefore 2200 GHz. With 100 GHz spacing we can have 22 channels
within this band.

(d) The required energies are given by hf, where h is Planck’s constant and f is the frequency.
Using h = 6.63 x 10734 J/Hz, the energy range required is 1.283 x 1071° J to 1.298 x 10719 J.

(e) This would be a two stage EDFA shown in Figure 3.37 with the loss element replaced by
the ADM.

(f) See Figure 3.82, with only two fiber Bragg gratings and a 2 x 1 combiner and splitter.
Note that there are multiple alternatives. Another alternative is to cascade two individual
add/drop units, one for each wavelength, each with a circulator and combiner. Another is
to cascade two individual drops first and combine the adds later.

(g) >From Section 3.3.3., the period of the grating is given by A = Xo0/2n.fs. Using n.rr = 1.5,
we get the periods of the gratings corresponding to 1532 and 1532.8 nm being 510.667 nm
and 510.933 nm.

If a switch has a crosstalk suppression of 50 dB, it means that the input power from each other
input is 107> of the input power from the desired input. In a 4 x 4 switch, we have three other
(unwanted) inputs. In the worst-case, we get each of them at the desired output with a relative
attenuation of 107>, Thus the crosstalk suppression is —1010g;q3 x 107> ~ 45 dB.

If the overall crosstalk suppression should be 40 dB, we need 45 dB crosstalk suppression in
each 2 x 2 switch.

First, the resulting filter will have a peak whenever mf; = nfs, where m and n are integers. Since
lem(f1, f2) is a multiple of both f1 and f», the resulting filter has a peak at glcm( f1, f2), where q is
an integer. We now prove that there cannot be a peak between glem( f1, f2) and (¢ + Dilem(f1, f2).

Pick the two integers M and N such that Mf; = Nf> = glem(f1, f2). The next peak will then
occur at the smallest values of two integers i and j such that

M+i)fr=N+J)fo
or
ifi = jfe.

By definition the smallest values of i and j for which this is satisfied is lcm(f1, f2). Therefore the
resulting filter is periodic with period lcm(f1, f2).

Say we have to establish a connection from an idle input of a first stage switch X to an idle output of
the third stage switch Y. To do so we have to have a fanout such that we can always find a middle
stage switch. Note that since at most m — 1 outputs of the switch X can be busy. Likewise, at most
m — linputs of the switch ¥ can be busy. To establish a connection we need to find a middle stage
switch to which one of these free ports in switch X and switch Y are connected. In the worst case, the
busy outputs of switch X are connected to m — 1 separate mid-stage switches and the busy outputs
of switch Y are connected to m — 1 other separate mid-stage switches. To find a free mid-stage
switch, there we must have the number of mid-stage switches, p > (m — 1) + (m — 1) = 2m — 1.
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e Modulation and Demodulation

4.1 (a) 1111101111101001000000.
(b) 0111110101111100011 is decoded as 011111 1011111 0011 .

The algorithm used by the decoder is to omit the zero following a sequence of five 1s.

4.2 (a)
Data in
Dy,
» D, ¥ Ds P Ds » D, » D, » D, » D, >+
Dout
+ Scrambled data out

The bits are assumed to be labelled as in the figure above. The operation of the shift register
is shown in the table below.
Din Dout D7 Ds Ds Dy Ds D> Dy
=Dijy+D1

e e e
el el eoleoNeleNe)

_0 OO0 O oo -
S OO OO O ==
S OO OO ===
OO OO R,
O OO R,
O O R P R P P =
[ N e el e

The scrambled output is 00000001111000000001.

25



26 MODULATION AND DEMODULATION

(b) The C program for solving this problem is given below.

#include <stdio.h>
#include <stdlib.h>
#define MAXBITS 10000000
main()
{
int D[8], Din, Dout;
int i, j, temp, prevbit, seq[2], maxseq[2];

/* Initialize random number generator */
srandom(1);

/* Intialize shift register contents */
for(j = 1;j <= 7; ++j) D[jl = 1;
seq[0] = seq[1] = 0;

maxseq[0] = maxseq[1] = 0;

printf(" k Sequence Max run\n");
printf(" length  of k’s\n");

prevbit = 2;
for(i = 1; 1 <= MAXBITS; ++i)
{

Din = random()&01; /* Din is a random bit */
Dout = Din"D[1];

temp = D[1]"D[2];

for(j = 15j < 7; ++j) D[j] = D[j+1];

D[7] = temp; /* Shifting of bits */

if(Dout == prevbit) ++seq[Dout]; /* run continues */
else /* run has ended */
{
seq[Dout] = 1;
if(seq[Dout™1] > maxseq[Dout"1])
{
/* new maximum run length found */
maxseq[Dout™1] = seq[Dout™1];
printf(" %1d %10d %10d\n",
Dout™1,i,maxseq[Dout™1]);
}
}

prevbit = Dout;
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4.3

For one sample run, the observed output was as follows.

k Sequence Max run

length of k’s
0 2 1
1 3 1
0 7 2
1 10 3
1 18 7
0 34 3
0 43 4
0 83 6
0 153 11
1 348 8
1 635 9
1 1940 12
0 3682 13
1 4664 14
0 6631 14
0 49942 16
1 117432 18
1 1008625 19
1 1200797 20
0 1301644 20
0 4299910 21
0 7597862 22

This is plotted in the figure below.

Run length

d(nT)
x(nT)

20

15

10

Sequence length

10101011010111100001
11001101100101000001

- O|:|
o Zeroes (o]
O  Ones o
L -
o
o
o
(@)
(@)
(e]
o
o
o o
o
1 2 3 4 5 6 7
10 10 10 10 10 10 10
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x(nT —T) = 011001101100101000001
y(nT) = xnT)+xnT —T)
= 12101211210111100001

To get x(nT) from d(nT) we assume d(nT) is preceded by 0’s. Note that y(nT) mod 2 = d(nT) as
expected.
Formally, the differential encoding x (nT) of d(nT) is obtained using

o0
x(nT) =[x(nT —T)+d(nT) mod 2 = Zd(nT —iT) mod 2.
i=0
Thus, x(nT) is the running sum, modulo 2, of d(nT).
Therefore,

y(nT)=xnT)+x(nT —T) = Zd(nT —iT) mod 2 + Zd(nT —iT) mod 2.

i=0 i=1
Thus, y(nT) = 1, if dnT) = 1, and y(nT) = 2x(nT — T) = Z(Z?ild(nT—iT) mod 2), if
d(nT)=0.
4.4
72 (G RP)?
SNR = — 2 = > - kg T :
0%+ Ofama  2¢G2 Fa(Gu)RPB. + %L F, B,
To optimize the SNR, we set
3SNR
3G, 0,
-2 2
a7 2 2 g0t | T2
or (ac,,,) (0ot T Fihermal) — < acT) =0
or (2¢G2 Fs(Gm)RPBe + 02 ) — Gme(x +2)GEHRPB, =0,
where we have used F4(G,,) = GJ,. Solving this equation yields
2 e 4 =
G = Othermal _ kpT Fp \*+
" eRPB,x eR; RPx ’
4.5 (a)
’ |
€
a b ‘ c
F
We have
~ SNR,
~ SNR.’
The signal-to-noise ratios at points a and b, respectively, are
RP)? RP(1—¢€))?
SNR, = D) hd SNR, = P2 )

2RePB, T 2ReP(1—¢€)B,’
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Therefore
NR, 1
SNR, 1—¢"
The overall noise figure is given by
SNR, F
SNR, 1—¢’
(b)
| :
a ‘ b c
F
We have
~SNR,
" SNR;’
P
SNR, = ___RP
AR?Pngp hf, Be
and RPA
SNR. d-9 — SNRy,.

~ AR2P(1— €)nyp hf. B,
Therefore the overall noise figure is F.

Note that this is true only if the signal-spontaneous noise power at c is much larger than
the receiver thermal noise power, which will be the case for power levels that are several
dB higher than the receiver sensitivity.

Note that F1 ~ 2n,,1 and F» = 2n,,2. Therefore, at the output, the noise power is given by
F1hv(G1 — 1)G2Bo + Fohv(G2 — 1)Bo = [F1(G1 — D)G2 + F2(G2 — 1)] hvBo.

Consider an equivalent amplifier with gain G1G2. Its noise power is
Fhv(G1G2 — 1)Bg.

Comparing this with the equation above, we get
F1(G1 —1DG2+ F2(G2—1)

F =
G1G2 -1
Assuming G1, G2 > 1, we have
F
F=F —.
1+ 1
(d)
G, €
F, F—’

This is similar to 4.4(c). The noise power at the output is given by
[F1(G1— 1A - €)G2 + F2(G2 — D]hvBo.

The equivalent amplifier has gain G1G2(1 — €) and its noise power is
Fhv(G1G2(1 — €) — 1) Bo.
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4.6

4.7

4.8

Assuming G1(1—€) > 1and G2 > 1, we get

Fepm+4— 12
T T Gia—e
We have
1 1 1 I — Iy, 1
BER = —P[1|0 —[1|0] = =
1+ 510 = 5o () 4 2
Using
ool1 + o1l
Iy = 240
oo+ o1

from (4.12), we get

o1(11 — Ip)
nh—Ip=———
00 + 01
and
oo(I1 — Io)
R
oo+ 01

Therefore, we have

1 I —Ip 1 I —1Ip I
BER = = - =
2Q<Go+01>+2Q<00+01) Q(Go

BER = %Q(ml_Td>+}Q<Td_m°>,

o1 2 00

From this expression, for large |T;|, BER — 1/2, so that an optimum T, that minimizes the BER

exists. Setting 9BER/aT; = 0, we get,

Lm0 _ 1 -
o o0

(Tq—mg)?/2032

or

(Ta —mo)®  (m1—Ta)?
20& 2012

=lno1/00

which can be written as

2.2

2 2\ 72 2 2 2 2
(o1 — o) T; + 2(mio§ — mooi) Ty + myoy — miog

Solving this quadratic equation for Ty, we get (4.21).
From (4.15), the receiver sensitivity

_ (o0 +01)
rec — 2GmR .

3]

—Q (Ith - IO>.
o0

—Ip

+61>'

— ZGgalzlnol/oo =0.
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. . 2 2 2 . .
Neglecting shot noise, we have 0§ = 07 = 0 g a0d G = 1for a pin receiver. Therefore,

Othermal
Peans = Z22EL
The power per 1 bit P; = 2Pec. For an error rate of 10712, y = 7. Using otherma = 1.656 x 10-22 B,
we get
2 x 4/1.656 x 10-22B x 7
p= = X * L _144%x10°VB W

125

At B = 100 Mb/s, Py = 1.44 W and M = 1.12 x 10° photons per 1 bit. At B = 1 Gb/s,
P; = 4.56 uW and M = 35.5 x 10° photons per 1 bit.

= (o0 +01)y = ooy \? o1y \?
4.9 Pons = 0T OVY (s — ¥ ) — .
(@) NS =TGR ( sens 2GmR> 2GR

Using 63, = 4¢G2 FA(G)R PsensBe, 0§ = 0 A0d 072 = 0 g + 02, in the equation
above, we get

= Othermal
Pens = 75 ( o yeFA(Gm)Be>
(b) To obtain the optimum value of G,,, we set
0 Psens —Othermal aF ora
=0=——= eB, =0.
3G, O Gz V%G,
Note that
Fa(Gpm) =kaGy + (1 —ka)2—-1/Gp).
So we have
0Fy _ 1—ka)

=k
3G AT TGz

Substituting this in the equation above, we obtain

yeB, [kA—i— E kA)] - 0"5#’2""‘3' =0
or (yeBeks)G2 = otheama — (1 —ka)yeB.
or Gn = SeE Ry — T
(c) From the solution to (b), we have
Jt:;e(r’g:al = vebe [kA " 1G0pItCAz "
Theref(;nre, ( :

Psens =

yeBeGin + yeBkaGrl' +2(1— ka)yeB,

[
[ZyeB GP'kp+ 21— ky)yeB, ]
2

= R I:kAGzzpt +1- kA] .

4.10 We assume that I1 = RGP (using (4.6)), Io = 0, 01 = osigspont, and oo K o1. With these
assumptions, (4.14) reduces to,

m) RGP
BER = -
Q<%+ﬂ Q(WW%P&@—Dm>
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4.11

4.12

where we have used (4.9) for 01 = ogg.spont. This simplifies to (4.18).

B, =100 GHz

Receiver sensitivity (dBm)

0.001 0.01 0.1 1 10 100
Bit rate (Gb/s)

The sensitivity is plotted in the figure above. We assume the amplifier gain is reasonably
large so that the thermal and shot noise terms can be neglected. So we consider only the
signal-spontaneous and spontaneous-spontaneous terms given by (4.9) and (4.10), respectively.
The receiver sensitivity is obtained by solving for Psns in (4.15), using both the terms for o1 and
only the spontaneous-spontaneous term for op. The resulting expression which is plotted in the
figure above is

5 _ eFB n /2B, — B/2
sens—)/R ns Y B

where we have used the condition B, = B/2.

We assume the optical amplifier has a gain G = 30 dB; however the results are fairly insensitive to
the gain as we will see later.

Denote the received power at the input of the optical amplifier by P and the loss introduced by
the attenuator by L. Both the signal and the spontaneous emission from the optical amplifier are
attenuated by L. Thus the noise variances in (4.7)—(4.10) are modified with G P replaced by GPL
and P,(G — 1) replaced by P, (G —1)L. We calculate the BER using (4.14) where we set P = 2Peens
for a ‘1’ bit, and P = 0 for a ‘0’ bit. We plot the BER versus the the signal power going into the
receiver namely, G PL, when L is varied, for four different values of P namely, —20, —30, —40, and
—50 dBm.
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4.13

Lor —50 dBm

Bit error rate

Power going into the receiver (dBm)

When the power into the amplifier is high (P = —20 and —30 dBm), the attenuator needs to be
set to a high loss value to measure BERs in the range of 10722 to 10~3. Due to the high attenuation,
the receiver is essentially thermal noise limited in this case and this is seen in the curves, where
the BER drops significantly as the power into the receiver is increased. For lower received signal
powers, such as P = —40 dBm, the attenuator is set to a low to moderate loss value, and in
this case, the receiver performance is dominated by the signal-spontaneous noise. For this case,
increasing the power into the receiver by varying the attenuator setting doesn’t have as much of an
impact on the BER as can be seen by the levelling off of the BER curve. The receiver performance
is fairly insensitive to the amplifier gain as can be seen in the figure below.

2
10
4
10
o
2 6
2 10
s 10
M 10*10 L Increasing gain
(20,25, 30, & 35 dB)
—12
10 F
_14
10 F
=30 -28 —26 -24 =22 -20
Power going into the receiver (dBm)
Here we plot the BER versus the signal power going into the receiver for P = —30 dBm for

G = 20, 25, 30, and 35 dB. For G in the 20-30 dB range, the curves are very close to each other.
For G = 35dB, the signal-spontaneous noise begins to dominate and the BER increases for the
same signal power into the receiver.

The OSNR is defined as the ratio of average signal power to the total noise power in both
polarization modes. Assuming that P is the average power, we can write
GP

OSNR = ——
Pase
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where Pasg = 2P,(G — 1) B, is the total noise power in both polarization modes.
For a 1 bit, we can now rewrite (4.9) as

B
0 gspont = 4R?G(2P) P, (G — DB, = 4R2GPPASEB—e,

o

and for both a 0 and 1 bit, (4.10) becomes

B
odont_spont = 2R*[Pa(G — D]*(2B, — B.) Be ~ R2P§SEB—6.
o

Here we have assumed that 2B, >> B,, which is the case in most practical systems. Therefore we

have
B R2G P
rT JAR2GPPase B 1 R2PE B+ [R2ZP2 B
2R PaseOSNR

B, B, B,
JARPOSNR P2 B + R2PZ 2o 4| [R2PR B
B,
20SNR, /5o
1+ +/1+40SNR’

For large signal-to-noise ratios (4OSNR > 1), this can be expressed as

B
y = JOSNR=2.
B,

4.14 For a PSK homodyne receiver,

R(P+ PrLo+2y/PPro),
Io = R(P+PLo—2/PPro).

I

We have
02 = 2elB, ~2¢RB,PLo,
og = 2el1B. ~ 2¢RB.Pro.
Therefore,
AR/ PP
BER = 0 <7L0>
2«/267?,36 PLO

o)
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Assuming B, = B/2, we get

BER = Q (2 %) = 02V M),

where M is the number of photons per 1 bit. For a BER of 10°, we want 2/M = 6or M = 9
photons / 1 bit.

4.15 Let the signal field at the input be
Es = ~/2a P cos(2r f..t)
and the local oscillator field at the input be
ELo = /2PLo OS2 f.1).

If we use a % phase shift at the second input and output of the coupler, its scattering matrix becomes

512

Therefore, the fields going into the two detectors are

E1 = (Es+ELo)/v2, and
(Es — EL0) /2.

E;

The equivalent powers are

1
P o= (E2+E2o+2EELo)

= % (aP+PL0 +2\/aPPL0), and
1
P, = > (aP + Pro — 2\/aPPL0) .

The average difference current is given by

1
i=R(PL— P = §R4,/aPPL0 =2R+\/aPPro.

On the other hand, the average noise power is the sum of the noise powers in the two arms and is
given by

o = 2¢eRP1B, x 2
= ZeRBePLo.
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4.16

4.17

The BER is given by (for OOK)

Q( 2RVPPLo )_Q RP
2J2¢RB.PLo) 2¢B, |’

which is the same as the expression derived in Section 4.4.7.

If the bits to be transmitted are 010111010111101111001110, the parity check bits are 11101000 so
that the transmitted sequence is 01011101011110111100111011101000.

If the received bits are 010111010111101111001110, the received parity bits are the last 8 bits,
namely, 11001110. Computing the BIP-8 on the first 24 bits yields 11101000. The number of
mismatches between the received parity checks and the computed parity checks is 3 and hence, we
conclude, that 3 bit-errors occurred.

The receiver makes an error provided that either all three bits get corrupted (probability p®) or two
of the three bits get corrupted (probability 3p?). Therefore probability of error = p3 + 3p2.
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5.1 The output power after 10 km = —20 dBm and the power after 20 km = —23 dBm. This implies
that the loss due to 10 km of fiber is 3 dB, or that the fiber loss = 0.3 dB/km. If the output power
of the source is P;,, dBm, we have

P, — 3dB (source-fiber coupling loss)
— 3 dB (fiber loss)
— 1dB (fiber detection coupling loss)

= —20dBm,
or P, = —13dBm =50uW.
5.2 (a)
o (=3 dBm + 30 dBm)
Loss limit = 0.25 db/km = 108 km.
500 ps 1

= 29.4 km.

Di ion limit —
1Spersion it = 77 ps/km-nm 1 nm

Therefore, the longest link length is 29.4 km.
(b)

. 0 dBm + 30 dBm
Loss limit = 0.5 db/km = 60 km.

The dispersion limit is infinite. Therefore the longest link length is 60 km.

(c)

B (GwRPn)?
 2eG2F4(Gum)RPinBe + %L F, B,
We have G,,R =8 A/W, G,, = 10 (hence R = 0.8 A/W), Fy = 3.16 (5dB), F, = 2 (3dB),
Ry, =50, and SNR = 1000 (30 dB). Assume T = 300°K. Substituting these values and
further assuming that B, = 500 MHz, we get

4P
4.045 x 10-8 p;,, + 3.312 x 10-13

SNR

1000 =

37
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or
64P2 — 4.045x 10™° P;, —3.312x 1070 =0
or P;, = 2.613 uW = —25.8 dBm. Thus, the longest link length = 25.8/0.5 = 51.6 km.
(d) Now we have
(Il%lJin)2

2¢R Pin B, + 4’1‘5T F,B,
Using R = 0.8A/W, F, = 3.16 (5dB), R, = 3009, B, = 500 MHz, T = 300°K, and
SNR = 100 (20 dB), we get
0.64P2

T 128x 10-10p, + 872 x 10-14

SNR =

100

or
0.64P2 —128x 10°8p, —872x 1072 =0
or P, = 3.7 uW = —24.3 dBm. Thus the longest link length = 24.3/0.5 = 48.6 km.

5.3 (a

~

We use BL|D|A)L < 0.491 for a 2 dB penalty, since the source spectral width (10 nm) is
large compared to the bit rate.
B = 100Mbps = L <28.9km.
= 1Gbps = L < 2.89km.
= 10Gbps =L <289m.
We use BL|D|A) < 0.491 for B = 100 Mbps and 1 Gbps since the spectral width 1 nm ~
120 GHz is large compared to the bit rate in these cases.
B = 100Mbps = L < 2890 km.
= 1Gbps = L < 289 km.

The same formula for B = 10 Gbps yields, L < 28.9 km. If we use the small spectral width
formula

BA

E

|D7T|f < 0.491,
we get L < 111 km. The actual limit will be somewhere between the two.
(c) For B = 100 Mbps, the large spectral width formula applies and L < 28, 900 km.

For B = 1 Gbps the spectral width is comparable to the modulation bandwidth. The
large spectral width formula yields L < 2890 km, whereas the small spectral width formula
yields L < 11,100 km. The actual limit will be between these two.

For B = 10 Gbps, the small spectral width formula applies and yields L < 111 km.

5.4 We use the same reasoning as in Problem 5.3.

(a) B L <
100 Mbps 98.3 km
1 Gbps 9.83 km

10 Gbps 983 m

(b) B L<
100 Mbps 9830 km

1 Gbps 983 km

10 Gbps 98.3 km (377 km using small spectral width formula)
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5.5

5.6

(c) B L <
100 Mbps 98,300 km

1 Gbps 9830 km (37,700 km using small spectral width formula)
10 Gbps 377 km

(a) Left to the reader.

(b) Note that the effective index of the InGaAsP material used in the DFB laser is not specified. It
is approximately 3.5. Using this value, the period of the grating is given by A = *o/2n.rr =
1310/3.5 = 374.3 nm.

(c) Note that NA is not defined in the book. Using (2.2), the NA is defined as

2 2
ny —n
. 1 2
NA=sngf™ =Y —_=
no

The NA for this fiber is therefore 0.173, assuming ng = 1, which corresponds to a critical
angle 60" = 10 degrees.
(d) Using (2.3), the intermodal dispersion limited transmission length is given by

L 1.49 x 3 x 10° B
2% 15552 x 106 x 1.52 x 0.01/1.5
(e) Using a loss of 0.4 dB/km vyields a total link loss of 0.04 dB.

(f) The received power P = —0.04 dBm = 0.9 mW. From Section 3.6.1, the photocurrent,
with wavelength expressed in microns, is given by

96 m.

fracil.24P A/'W = 1 mA.

(g) For the fiber to be single-moded at 1310 nm, from (2.12), we need the fiber core radius

24051
a4 < ————==29um.

2_ 2
2 /n{ — nj
Therefore the core diameter needs to be smaller than 5.8 um.

Left to the reader.
The wavelengths are 1550.918, 1551.721, 1552.524, 1553.329, and 1554.134 nm.
The total launch power is 5 mW so the power per channel is 1 mW.

(a)
(b)
(c)
(d) From (5.15), the chromatic dispersion limit for 1 dB penalty is

L =0.306/(2.5Gb/s x 0.1 nm x 17ps/nm — km) = 72 km.
For PMD, using (5.23), we must have

_{0.1x400ps
0.5 ps/vkm

To compute the loss limit, we need to assume a particular receiver sensitivity and wavelength
demultiplexer loss. Assuming a sensitivity of —30 dBm for the receiver (see Figure 4.9) and
a loss of 5dB for the demultiplexer, the allowable link budget, assuming no additional

2
> = 6400 km.

margins are required, is 32 dB, which translates into a link length of 128 km.
(e) The limiting factor is chromatic dispersion, and the allowed link length is 72 km.
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5.7

5.8

5.9

(a) Left to the reader.

(b) Since the fiber has zero dispersion at 1310 nm, the link is loss limited, not chromatic
dispersion limited.

(c) From Section 4.4.1, we have, for an ideal quantum limited receiver,

BER = 05¢M

where M is the average number of photons received during a 1 bit. We need M = 27 for a
BER of 10712, The corresponding average power, including 0 bits, is

3 x 108
1310 x 1079 x 27 x 2.5 x 10°
(d) The average photocurrent is given by

=5.12x10 % mW = —53 dBm.

1
ShfMB = 0.5%6.63x 10~34x

° p=54x10%mA.
hf

(e) Since the link loss is 24 dB, we would need a launch power of —53 + 24 = —29 dBm.

(a) Left to the reader.

(b) Since there are two additional 3-dB couplers in the path, the launch power needs to be
increased to —23 dBm.

(c) At 2.5 Gb/s, the sensitivity at 1550 nm can be calculated as in Problem 5.7 to be 4.33 x
10~ mW = —53.6 dBm. At 10 Gb/s, the sensitivity is 17.32 x 10~ mW = —47.6 dBm.

(d) The PMD limit is independent of the wavelength. Using (5.23), the limiting bit rate for
both systems is given by

o1 _ 0.1 = 12.9 Gb/s.
DpupvyL  1x10-12,/60

The chromatic dispersion limited bit rate for the 1550 nm channel is given from (5.15) as
0.306 0.306
< =
DLA) 17 ps/nm-km x 60 km x 0.1 nm

The loss limit depends on the launch power used.

(e) 10 Gb/s cannot be transported in the new system because of the chromatic dispersion
limitation.

(f) At 2.5 Gb/s, for the 1550 nm channel, we need a minimum launch power of —53.6 + 0.25 x
60 + 6 = —32.6 dBm.

B <

= 3 Gb/s.

R(P{—Py)
o1+0)
R(P1—Po)
o1+00

PP = —10log

If we assume P1 > Py, P; > Py, 01 > 0y, 01> oo and o104/ P1, o7,/ Py, we get

Vi P}
PPsigindep = —10l0g N :—5Iog?1.
1
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5.10

R(P}—P})
/+ /
PP = —10log %

o1+00

With an ideal extinction ratio, we have Py = 2P, Py = 0, 012 = 2xP + y, and 002 = y, where
x = 4R?GP,(G — 1)B, and y = 2R?[P,(G — 1)]*(2B, — B.)B.. Here we have considered only
signal-spontaneous and spontaneous-spontaneous beat noise.

With an extinction ratio of r, we have (see Section 5.3, p. 207), P = 2rP/(r + 1), Py =
2P/(r+ 1), 02 =2rP/(r+ 1) +y,and o = 2xP/(r + 1) + y.

Therefore,

2PR(r—=1)/(r+1)
PP — —10|Og V2xr P/(r+D)+y+/2xP/(r+1)+y

2PR
V2 P+y+/y
r—1 2P +y+ .y
= —10log .
r+1y2xrP/r+ ) +y+V2XP/r+D+y

If y « 2x P/(r+1), that is, the spontaneous-spontaneous noise term can be neglected in comparison
with the signal-spontaneous term, even for a O bit (in the nonideal extinction ratio case), this
expression simplifies to

PP— —10log [ ==Y 1)
r+1r+1

5.11 Solving equations (5.6) and (5.7) with the given values of the other parameters (Gmax = 35dB, [ =
120 km, o = 0.25 dB/km, ngy = 2, P = 10 mW, and B, = 50 GHz), we get, Pou = 11.524 mW
and G = 999.998. Since the loss between stages is 0.25 x 120 = 30 dB, or 1000, the steady-state gain
is slightly smaller, as expected. The steady-state amplifier output power (11.5 mW) is somewhat
larger than its internal saturation power (10 mW).

We assume that a signal with an input power of 1 mW is transmitted. The evolution of the
signal power and optical SNR, at the output of each amplifier, are plotted below.
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5.12

5.13

=
g
5
z
o
2
=
£
an
=
5 10 15 20 25
Number of amplifier stages
50
48[
)
=
e
Z
w
g
a
)
40

5 10 15 20 25
Number of amplifier stages
Note that the signal power reaches its steady state value of 11.5 mW calculated above, after a

few stages. The optical SNR increases for the first few stages but later decreases with increasing
number of stages, due to accumulation of noise at each stage.

Using Py = €P, 0y« ~/€P, P = P(1—-2,/€), and o] o,/ P|, we get,
P — P _ 1-2/e—¢ 7
o1ty Jet+1-2/€

Using /1—2/e = 1 — /e + O(e), the /e terms in the denominator cancel and we get the
denominator is 1+ O(€). Neglecting the O(¢) terms, and using this along with o7 o +/P in (5.2),
we get (5.12).

N
E(t) = V/2Pd,(t) cos[wct + 5 ()] + Z V 2€i dyi (1) COS [wct + ¢xi (D] -
i=1
The received power is proportional to the square of the electric field and is thus given by

N N
P =Pdi(t) + Y eadxi(t)+ Y 2/& Pdyi(t) cos[ps(t) — ¢ui(1)]

i+1 i=1
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5.14

5.15

5.16

5.17

+ DD 2/€€ Pdyi(1)dyj(1) CO i (1) — i (1)].

N N
=1 j=1

1

Neglecting the /&€ term, we get (5.9)=(5.12) with /e = ZlN:l Ve in (5.9) and (5.10) and
e=Y" €in(5.11)and (5.12).

Equation (5.16) is an approximation because % may not be an integer.
A precise form of this equation is

1—ed| L] 21— oLyl
L= “
o I o

This equation is derived by observing that when amplifiers are placed I km apart, there are L%J
amplifiers in a link of length L. Adding the contributions from these | £ | spans gives the first term.
The second term is the effective length of the remaining link length, namely, L — | %] 1.

Let § = 10~¢/19, Since the crosstalk adds coherently, (5.9) applies if we assume detection limited
by thermal noise.
(a) For coherent addition of crosstalk in N stages, the crosstalk level after N nodes is (N+/5)2.
(b) After S nodes, the crosstalk level is (5v/8)% = 258. The crosstalk penalty is is given by
PP = —10log (1 — 2v/255).
For a 1 dB penalty, C = 33.7 dB.

Assume the crosstalk power from each adjacent channel is $P and the crosstalk power from
non-adjacent channels is negligible. Then
2P 2rP Po+ P Py

Py = and P = here P = here— =r.
0 r+1 1 r+1w W Po "

In the worst case,

’ _ _ : :
P (1) = - + Gr = . (r + 6) (ad]acent channels send a 0 blt),

and

P'(0) 2P n 2rP 2P
= € =
r+1 r+1 r+

1(1 + €r) (adjacent channels send a 1 bit).

So we get
r+e—1—er (r=1(A—¢)
PPgq.i =-10log{ ———— ) = -10log | ————=|.
sig-indep g< F 1 ) g[ F 1 i|
For r = 10 (10 dB extinction ratio), ¢ = —15.35dB. Therefore, for each adjacent channel, the

crosstalk supression should be —18.35 dB.

(a) Let C dB correspond to a fraction 8, that is, § = 10~¢/19, After demultiplexing, a fraction
8 of the power from say, wavelength i, is present in the adjacent channels i + 1 and i — 1.
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After multiplexing, at the wavelength i, we get two crosstalk signals with powers 82
each added coherently for a total power of 452. We assume that the detection is limited by
thermal noise, so that (5.9) applies. In this case we have € = 452 for each stage and after N

stages,
Je = Ny/4s2,
Thus
PP = —10log(l— 2/e)

= —10log(1— 208) for N =5
= —10log(1 — 20 x 10~¢/19).

(b)
PP < 1dB=1-20x10"¢/1% 10702
or 107¢/1% > 00103,
or C > 19.9dB.
5.18 The crosstalk from the mux/demuxes due to each adjacent channel is 2 x (—25) = —50 dB below

the desired signal. However, this is intrachannel crosstalk as is the crosstalk of —40 dB from the
switch. Thus there are three crosstalk signals with €1 = e = 107°0/10 and 3 = 107410 at each
stage.

After N stages, there are 3N crosstalk signals with 2N of them 50 dB below and N of them
40 dB below the signal. Therefore,

2

. - (Ni@)

i=1

2.665 x 10~ *N2.

For a 1-dB penalty,

—10log(1—2Je) < 1
or /¢ < 0.103
or 0.0163N < 0.103

or N < 63

Therefore, six nodes can be cascaded in a network with a penalty < 1 dB for detection limited by
thermal noise.

5.19 (a) The best case transmittance is when all the muxes and demuxes have their centre wavelength
M. = Ac. The transmittance in this case is 1, or equivalently, 0 dB. The worst case
transmittance occurs when all the muxes and demuxes have their center wavelengths at
Ac + AX or A, — A). This worst case transmittance is given by

N
[e—@“z/?"z] — (0.9692)" = 0.1357N dB.
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5.20

5.21

5.22

(b) We need
—(an2022]0 _ 1
[e ] -

which yields AA = 0.0745 nm.

From each adjacent channel, the crosstalk power in one stage for 0.8 nm separation is given by
¢~ (08?/202% _ 33546 % 104 = —34.74 dB.

Thus after N stages the crosstalk power = 31.73N dB. When the adjacent channels are at the
worst-case positions, the crosstalk power from both adjacent channels is given by

2 x ¢~ (0797202 _ 375348,

After N stages, the crosstalk power = 27.53N dB.

The added wavelength undergoes a loss of

1 dB (new circulator)

+ 20 dB (grating transmission of 1% corresponding to reflectivity of 99%)

+ 1 dB (“drop” circulator)

=22 dB.
So the crosstalk power from leakage of the added wavelength into the dropped wavelength

=0dBm — 22 dB = —22 dBm.
The loss undergone by the dropped wavelength is

1dB (“drop” circulator)

+ 20 dB (grating)

+ 1 dB (“add” circulator)

= 22 dB.
Thus the crosstalk power from the dropped wavelength into the added wavelength

= —30 dBm — 22 dB = —52 dBm, which is small compared to the power of the added signal.
However, the crosstalk power from the added signal (—22 dBm) into the dropped signal is much

larger than the power of the dropped signal itself, which is

—30dBm

— 1 dB (first circulator pass)

— 0.04 dB (grating)

— 1 dB (second circulator pass)

= —32 dBm.

Therefore the element will not work.

From the solution of Problem 5.30,

To.opt = (L+ k24 /IB2IL.

Setting ¥ = O for an unchirped pulse, we get

TO,opt =V |,32|L-
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5.23
AT?

Denote the probability density function of At by fa:(.) and its (cumulative) distribution function

byFAt(.).
Pr(PP<p) = (Arze(l—e)fszzp/a)
_ OoPr(e(l—e) < x/AT2|AT :t) Far(t)dt
t=0
= OoPr —05+,/0.25— 2)( —-05-,/0.25— 2) O) ()d
» ((e x/t € x/t4) > fac(t)dt

Pr((e—0.5+,/0.25—x/t2> (e—O.S—,/O.ZS—x/t2>>O> = 1, for 1% < 4x,
= 1—./1—4x/12, for1?> 4x.

Therefore,

Pr(PP<p:xa/T2) = Fa: (2Vx) + ” (1—,/1—4x/t2>fm(t)dt

t=2/x

= 1-— ” 1—4x/t2fp.(2) dt.
/I_M\/ /12 fac(t) di

Using (see Appendix H.1.2),

,V/i 25 2
far(x) = ——=x%e™2C x>0,
adm
and the relation (use a symbolic integration package such as Mathematica™ or see a table of
integrals),

e} /t2 _y2
/ Y ey di = 1%,
=y t
we get,

Pr (PP <p= xa/T2> -1— e—4x/2a2 —1- e—4pT2/2aa2.

Therefore, PP is exponentially distributed with mean aa?/272. Using (A1) = 2a+/2/7 (Appendix
H.1.2) or a = (A1)4/7/8, the mean of PPis wa(At)2/16T2.

1672

Pr(PP>1)=e man?,




47

5.24

Assuming o = 16 and (At) = 0.3T, Pr (PP > 1) ~ 0.03. Thus, if the average DGD is less than 0.37,
the power penalty due to PMD is unlikely to exceed 1 dB.

dl
d—; = —gplyls +al. (5.17)
dI
d—zf’ = —gpl,I; —al,. (5.18)

Neglecting the depletion of the pump wave, (5.18) becomes

di,
— = —alp.
dz “r

Solving this equation, we get
I,(2) = I,(0)e ™%
Substituting this in (5.17) yields

dl

d_Z = _gBIp(O)e_aZIs + alg

= (x— gBIp(O)e_aZ)IM

or,

dl, By
e + (gl (0™ —a)I; = 0.

Solving, we get
E—(YZ
e %8810 = 1 (7) — constant, c.
Setting z = 0, we obtain

¢ = 8810/ 1,(0).

Therefore,
BP0 o
L) = e @ B (0)
or (L) = e"‘LeigBofp(O)[l_e_aL]IS(O).

1_e—mL
o

Recognizing that = L, and using P, = A.I, and P; = A.I; we get

P,(L) = P,(0)e -

and

gpPp(O)Le

P;(0) = Py(LYe ®L ¢ 7
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5.25 As the SBS interaction occurs within a single wavelength, it does not matter whether the system
has one or many channels.

(a)

Only the line width of a single line matters since the line separation is much greater than
the SBS gain bandwidth Afp of 20 MHz. The SBS threshold power
Zlee <1 Afsource)
+ .
-1 L, Afs
Assuming b = 1,

A
Pn~13 <1+ M) mW.
Afp
For A fsource = 1 GHz and Afp = 20 MHz, Py, = 66 mW.

Again P~ 1.3 (1 + 1000) ~ 66 mW.
Pin ~ 1.3 (1 n 10000) ~ 650 mW.

P~

From (5.27),
T 4 L2 L?
_ iyt + (1 +— ) -
To LNL LD 3v3Lyi?
Therefore,

4 ,32L2
T2 = T2 +«/§ L + 2
L 0 & ( \/§LNL ) T02

2
3 Jé L the optimum Ty satisfies (see solution to problem 5.30),

Denoting, KI%, L=
aT?
715 =0
or To.opt(L) = /IB2IL(L+ k3, ) Y4,

Denoting @ = ~/2L,/Lyy (which is also proportional to kyz), the optimum final pulse
width T opt is obtained by solving

B5L
TL ,opt = TO opt T alpr + (1 + KNL) )
Oopt

Ty, opt(L) = /|B2|L \/2\/ 14§, +sgn(B2)a.

Note the similarity to Ty opt in the solution of Problem 5.30. In fact, by setting ky; = «
and o = 2« in the above expression, we get the expression for 77 opt in Problem 5.30, as
we expect.

We assume that satisfactory communication is possible with a power penalty PP(¢) if
the width of the pulse as measured by its rms width 7™ is less than 1 + € times the bit
period. Therefore, we must have, T; < +/2(1 + €)/B. The maximum link length for which
the output pulse has an rms width less than (1 + €) times the bit period is given by the
solution of

T2 (L) = 2(1+ €)2/ B2
which is

as

2(1+4¢€)?

32|ﬁ2|\/21 1+ k2, + sgn(B2)a

We further assume, somewhat arbitrarily but in analogy with the NRZ pulse case, that
€ = 0.306 for a power penalty of 1 dB, that is, PP(0.306) = 1 dB. We can now calculate

Lmax =
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5.27

5.28

5.29

~—

Lmax based on the other system parameters. E.g., for B = 10 Gb/s, D = 17 ps/km-nm,
A =155um, L, =20kmand Ly; = 38.4km (which corresponds to a transmit power of 10
mWj see page 89), we get, Lmax = 1077 km , T opt(Lmax) = 160 ps, and T, opt(Lmax) = 185
ps.
If only chromatic dispersion were present, using (2.13), the output pulse width at the end
of a link of length Lmax when the input pulse width is To gpt is given by

Tdisp(Lmax)2 = TO,opt(Lmax)2 + ,322Lr2nax/TO,opt(Lmax)2

= |BelLmax | {1443, + %
We can calculate the pulse broadening factor egisp due to dispersion using szisp =21+

€disp)?/ B? and estimate the power penalty due to dispersion alone by interpolation, using
the values PP(0) = 0 dB, PP(0.306) = 1 dB and PP(0.491) = 2 dB. For the same values as
in (b), Thisp(Lmax) = 216 ps and egigp = 0.53 and we estimate that the power penalty due to
dispersion alone to be 2.2 dB. Thus, in this example, the SPM penalty is —1.2 dB.

In general, the SPM penalty calculated in this way is negative if D > 0, that is, 82 < 0 and
positive otherwise.

Interestingly, we observe from the expressions for Ty opt and Tyisp that their ratio, and hence the
SPM penalty calculated as above, depends only on L./Ly (through «x and «) and the sign of D
(or B2), and is independent of the actual value of D.

Using a computer program, a set of wavelengths with this property is 193.1, 193.3, 193.6 and
194.0 THz.

Maximum transmit power per channel (mW)

1000 —— 8 channels, 100 GHz apart
------ 32 channels, 100 GHz apart
100 - --- 32 channels, 50 GHz apart

2000

5000 10,000

0.1

100 200 500 1000

Distance (km)

Second order nonlinearities typically have no effect on a lightwave system since the resulting
frequencies (f1+ f2) and (f1 — f2) are out of band as long as the set of frequencies fi, f2, ..., fy all
lie within a single octave, which is usually the case. In any event, the second order susceptibilities
in silica are negligible.

5.30 The frequency spectrum of the source is given by

F(w) = Bowge™@~#0/20,
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where we have assumed a Gaussian profile. The rms spectral width is

rms @0

V2
(see solution to (2.10)). The 20-dB spectral width is given by 2(w20 — wp) where wyg solves
¢~ (w20—w0)*/wf — 0,01,

We have used a)g instead of 2(,()8 in the exponent since the pulse power is proportional to the square
of its amplitude. Solving this equation yields

2(w20 — wo) = v/ —4In0.01wy.
Therefore

20-dB spectral width  +/—4In0.01
6.07 - 607

5.31 From (2.25),

B kBaL\* | (BaL\?
TL_/(M L) (LY,

The optimum Ty satisfies

wo = 0.707wp = rms spectral width.

AT
9Ty —

KkpaL _ kBl 282L [ =BoL | _
=>2(To+ To)(l T02>+ 2 gTOZ)_o
= (1+kx)(1—kx) = x? where x = T—OZL

2_ 1
=X T 14«2

or To.opt = V/1B2IL(1+ k2 V4,

Therefore, we have

2
sgn(B2)x 1
Tropt = To,opt\/<1+ 5m> + 152

_ To,0pt \/ 2
= = (\/ 1+k2+ sgn(,Bz)/c) +1

= I2B2IL \/\/ 1+ «2 + sgn(B2)k.
In the 1.55 um band, B2 < 0. Thus for k = —6,

TL,opt — v/ 24166|ﬁ2|L

The condition BT;™ < € translates to

BTL,opt < 6\/§
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or BJ/24.166|82|L < €v/2

12.08/D|L

or BA
2mc

For D = 17 ps/km-nm, » = 1.55 um, and € = 0.491 (2 dB penalty), we get
B?L < 921.05 (Gb/s)?-km. For B = 1 Gb/s, L < 921 km.

For the same values of D, A,and €, we have from Figure 2.10 (and the accompanying explanation)
that B2L < 11126 (Gb/s)?-km. Thus for B = 1 Gb/s, L < 11,126 km which is much higher.
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(a) Optical channel layer and/or SONET path layer.

(b) This would be handled by the SONET line layer, not any of the optical layers.

(c) Again this would be done by the SONET section layer. However, we may have OEOs
within the optical layer itself to regenerate the signal on a wavelength-by-wavelength basis
if we have exhausted the optical system link budget. In this case, the OEOs may monitor
the error rate as well, and this function would be part of the optical channel layer.

System Loss Range at 1550 nm Range at 1310 nm
SR 0-7 dB 0-28 km 0-14 km

IR 0-12 dB 0-48 km 0-24 km

LR 10-24 dB 40-96 km 20-48 km

The link from the S-16.1 transmitter to the I-16 receiver, we have:
Tx power: 0 to -5 dBm,
loss: 0 to 7 dB, and
Rx power: -3 to -18 dBm.
The maximum power received is 0 dBm and happens when the transmit power is 0 dBm and the
loss is 0 dB. This is 3 dB larger than the receive overload value and hence in this case, a VOA with
a range of 3 dB is needed.
For the link from the I-16 transmitter to the S-16-1 receiver, we have:
Tx power: -3 to -10 dBm,
loss: 0 to 7 dB, and
Rx power: 0 to -18 dBm.
The maximum power received is —3 dBm and happens when the transmit power is —3 dBm and the
loss is O dB. This is less than the receive overload value and hence in this case, no VOA is needed.
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7.1 (a) Let L denote loss between the two nodes in dB. Then power received on A1 at node B’s
input is 0— L dBm. Minimum power on desired wavelength is —30 dBm. To get a crosstalk
of 15 dB, assuming a suppression of S dB, we must have

—L — S < —-45dB.

In a worst-case scenario L = 0 dB, in which case, we need S = 45 dB.

(b) Assume that 0 dBm is input to node A at the dropped wavelength. If T is the intrachannel
crosstalk suppression, then the crosstalk power exiting node A is —7 dBm. With the signal
at 0 dBm, we must have

0— T < —30dB,
or T > 30 dB, independent of the link loss.

7.2 A simple wavelength assignment for the lightpaths is AB, BC, and CD at A1; AC at Ap; and BD at
A3. Then node A drops/adds A1, A2; node B drops/adds A1, A3; node C drops/adds A1, Ap; and node
D drops/adds A1, A3.
For the new lightpaths, one possible wavelength assignment is AB, BC, and CD at A1; AD at
A2; and BC at A3. Then node A drops/adds A1, A2; node B drops/adds A1, A3; node C drops/adds
A1, A3; and node D drops/adds A1, A2.
Note that nodes C and D have changed from before.

7.3 (a) Left to the reader.
(b) With N intermediate OADMs, the total loss along the path is 2N 4+ 2+ L where L denotes
the total link loss. Therefore 2N + 2+ L < 30.
(c) Left to the reader.

7.4 Consider the following OADM architecture.
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7.5

7.6

Tunablg filter Switch

]
Y
«
Splitter / g y Combiner

«

/ >
A
Y Y A

Tunable transponders

The main difference between this architecture and that of Figure 7.7(d) lies in the use of tunable
filters and small switches instead of a mux/demux and a big switch. Since splitters and combiners
are used, there is a minimum passthrough loss of 20log W, where W is the number of channels. So
a 32-channel OADM will have a minimum passthrough loss of 32 dB, which is quite high. Also
now a tunable filter is required for each wavelength, which may or may not be more expensive

than using a fixed filter and a port on a big switch.
VOA

Demux Mux
Splitter Combiner
»

< V4

Tunable filter / /

Tunable transponders

Another plausible OADM architecture is shown above. Here a wavelength blocker device (a
demux/mux combination with a per-channel variable optical attentuator) is used to either block
the add/drop channels from passing through as well as equalize power levels for the passthrough
channels. The loss in the passthrough path is low, but the loss in the add/drop path is high due to
the splitters and combiners. However, tunable filters need be provided only for drop channels and
not for all channels.

Each remote node drops and adds 2 wavelengths and 8 wavelengths are needed in total. Hub drops
and adds all wavelengths.

System 1: Remote node needs 1 OADM and 2 regenerators for a cost of $40,000. Hub node
requires 2 OADMs for a cost of $40,000, so total network cost is $200,000.

System 2: Remote node needs 2 OADMs for a cost of $20,000. Hub node needs 8 OADM:s at
$80,000. Total network cost including amplifiers is $220,000.

(a) For each WDM system, we require 24 line ports on the OXC and 16 trib ports, or 40 ports.
Therefore a 256-port OXC can support 6 WDM systems.
(b) Out of the 24 lightpaths passing through, 6 of them need to be converted, taking up a
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total of 12 additional OXC ports. Now we need 52 ports per WDM system. Therefore a
256-port OXC can support 4 WDM systems.

The 24 lightpaths passing through take up only 6 OXC ports, and the 16 drop/adds take
up 4 more ports for a total of 20 ports. Therefore a 256-port OXC can support 12 WDM
systems.

The figure is essentially Figure 7.15. However, since the tuning range is limited, the add/drop
switch can be partitioned into a number of smaller switches, each switch being connected
only to a subset of the passthrough wavelength plane switches. In this case, we will use 5
smaller switches, the first one connected to wavelength plane switches for A1 through Ag,
the second connected to the switchesfor Ag through 117 etc.

The 4 add/drop channels may all be within a single band. So we need to pre-equip the
node with 4 tunable lasers for each band, or a total of 20 tunable lasers.
Since each laser now tunes over 2 bands, we can reduce the number of pre-equipped
transponders but will need larger add/drop switches. Each add/drop switch needs to be
connected to the wavelength plane switches for 2 bands. Say we decide to allocate a pool
of lasers for bands 1 and 2, another pool for bands 3 and 4, and a third pool for band 5.
Now we’ll need to pre-equip 4 transponders for each pool, or a total of 12 transponders.
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(a) Setting up and taking down lightpaths in the network: OCh

(b) Monitoring and changing the digital wrapper overhead in a lightpath: OCh

(c) Rerouting all wavelengths (except the optical supervisory channel) from a failed fiber link
onto another fiber link: OMS

(d) Detecting a fiber cable cut in a WDM line system: OTS

(e) Detecting failure of an individual lightpath: OCh

(f) Detecting bit errors in a lightpath: OCh

Number the nodes from left to right. Node 2 is the amplifier for example. Assume that the
regenerator is part of the SONET layer and that the connection is processed by each network
element shown in the figure. The story would be different if the signal were for example bypassed
through Node 3 optically without going to the SONET ADM. In this case, Node 3 would terminate
layers up to the OMS only for this connection.

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Path Path
Line Line Line Line
Section Section Section Section Section
OoC OC OoC

OMS OMS OMS

OAS OAS OAS OAS

m Assume the fiber cut occurs at time 0, and at the middle of the link between A and B. Also
assume time is an integer in millseconds. The following events would occur. 0: Fiber cut.
1: Loss of light at node B.
3=1+2: Node B detects loss of light.
8=3+5: Node B transmits OMS-FDI to node E, and OTS-BDI to node A.
11=8+3: OTS-BDI received by node A, if the fiber from B to A is not cut.
17=8+3+3+3: OMS-FDI from B received by E.
22=17+5: OCh-FDI transmitted by E for all lightpaths passing through it, for example,
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8.5

those destined for G. 25=22+3: OCh-FDI received from E for lightpaths affected by the
cut.

2003=3+2000: Alarm raised by node B.

If FDI signals are sent immediately, the following would be the timeline. 0: Fiber cut.

1: Loss of light at node B.

3=1+2: Node B detects loss of light.

3=3+0: Node B transmits OMS-FDI to node E, and OTS-BDI to node A.

6=3+3: OTS-BDI received by node A, if the fiber from B to A is not cut.

12=3+3+3+3: OMS-FDI from B received by E.

12=12+0: OCh-FDI transmitted by E for all lightpaths passing through it, for example,
those destined for G. 15=12+3: OCh-FDI received from E for lightpaths affected by the
cut.

2003=3+2000: Alarm raised by node B.

There is not much difference between the two methods.

m In an OXC with an electrical core and OEO conversion, the OXC can either use some of

SONET/SDH overhead bytes, or use a digital wrapper, or an out-of-band signaling channel.
The out-of-band channel can be carried on a separate wavelength, part of a wavelength
(example: an OC-3 multiplexed into an OC-192 stream by the OLTs) or on a separate
network, It can thus communicate in-band or out-of-band with other OXCs. It could
monitor virtually all performance parameters used by SONET/SDH systems, including
BER.

In an OXC with an optical core and no OEQ conversion, the OXC has to use an out-of-band
signaling channel, carried as stated above. It could monitor a limited set of performance
parameters such as optical power level and optical SNR. Direct monitoring of performance
parameters such as BER would not be possible.

(a) Note that both 7 and 7" > 2dpyrop for the protocol to work.
(b) The time taken is alwayst + 1t/ + 7t =2t + 7.
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9.1 Consider connection CE in the figure below. If link BC fails, we have the following
(a) path protection: Connection is restored along CDE (2 hops).
(b) line protection: Connection is restored along CDEABAE, which is very inefficient, compared
to path protection.
B

E

Next consider a 1 hop connection DE. If link DE fails, both path and line protection use
DCBAE to restore the connection. In this case, both need the same amount of bandwidth for
restoration. In general, path protection is better (more efficient use of bandwidth) at restoring
multihop connections than line protection.

9.2 Consider a link carrying traffic equal to its working capacity. If that link fails, then there is no way
to restore traffic unless protection capacity = working capacity.

9.3 Note first that if both types of rings operate at, say, OC-12 speeds, the maximum concatenated
connection stream that can be carried in a UPSR is OC-12¢, whereas in a BLSR/2, it is OC-6¢
(because half the bandwidth on each fiber is reserved for protection). This is true regardless of the
traffic pattern.

Consider rings with N nodes and an additional hub. Let 7; denote the traffic between node i
and the hub. First note that since all traffic must be routed to the hub, the working capacity into
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the hub is only C, where C is the link speed. Therefore traffic patterns for which 3" ;1 > C
cannot be supported,

We will show that in both the UPSR and the BLSR/2, all traffic patterns such that ZlNzl t <C,
can be supported (assuming traffic from a single node in a BLSR/2 can be split across two routes,
if necessary). First consider the UPSR. Traffic from node i uses capacity ¢; on every link in the ring
(considering both working and protection traffic). Therefore this traffic can be supported provided
YLy <C.

Now consider the BLSR/2. Note that only a capacity of C/2 on every link is available for
working traffic. Consider a traffic pattern such that ZlNzl t; < C. From node i, we route f; /2 units
clockwise and f; /2 units counterclockwise on the ring to the hub. With this routing the traffic load
on each link is ZlN:l t;/2 < C/2. Therefore this traffic pattern can be supported.

Therefore the UPSR and BLSR/2 can support the same set of traffic patterns in this case.

Thus a UPSR is superior for this application because it has the same traffic carrying capacity as
a BLSR/2, and in addition,

m supports OC-12c¢ connections,
» has faster protection, and,
m is a simpler and less expensive system.

The traffic distribution has all traffic between adjacent pairs of nodes. So the capacity is NC, where
C is the bit rate on the fiber and N the number of nodes.

For the uniform traffic case, the average hop length is approximately N/4, where N is the number
of nodes. So the reuse factor is approximately 4. So the capacity is 4C, where C is the bit rate on

the fiber.

(a) Left to the reader.

(b) Left to the reader.

(c) For UPSR, both the routes around the ring need to be used for work and protect. Thus
each demand utilizes the bandwidth on every link in the network. Since the total demand
is 80 STS-1s, this bandwidth is used by UPSR on every link in the network.

For BLSR, use the shortest path between nodes. This yields a load of 24 on the links
A-B, B-C and C—D, a load of 8 on D-E and 22 on E-A. The average load arising from
shortest path routing is a lower bound on the maximum load (from (8.10) together with
the solution of Problem 8.7). Thus, under any routing scheme, the maximum load cannot
be lower than [(24 x 3+ 8 + 22)/5] = 21. We can get a better lower bound by reasoning
as follows. Club the nodes D and E into one node “DE” to get a 4-node ring with the
following demand matrix (ignoring the demand between D and E).

STS-1 B C DE

A 12 6 16
B 8 16
C 14

The average link load (rounded up) due to shortest path routing on this 4-node ring is
[(12+6x 2+ 16+ 8+ 16 x 2+ 14)/4] = 24. This is a lower bound on the maximum load
for the original 5-node ring. (To prove this, observe that if this is not the case and there is
a routing scheme for the 5-node ring which yields a better maximum load, then the same
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scheme can be applied to the 4-node ring leading to a contradiction.) Thus the maximum
load of 24 obtained using shortest path routing is optimal.

(d) UPSR requires an OC-192 ring whereas BLSR only requires an OC-48 ring.

(e) BLSR is better since OC-48 rings are cheaper than OC-192 rings.

9.7 With 2 cuts, the network is partitioned into two clusters of nodes without any connection between

9.8

9.9

the two clusters. Nodes within each cluster can communicate. Note that this is the case with all
rings in general.

The UPSR can handle multiple cuts in one of the two rings because the other ring will be still
fully functional. While it is quite likely that both fibers on a link get cut at the same time, this
capability still enables the UPSR to continue providing service when a transmitter or receiver fails.

Unlike the UPSR, the BLSR/2 cannot handle multiple cuts because the protection capacity is
shared.

The BLSR/4 can handle multiple failures of transmitter/receivers (one per span). It can handle
simultaneous cuts of 1 fiber pair per span. Note that once span protection is used, line protection
cannot be used any more to recover from another failure.

This scheme works fine under normal operation but cannot protect individual connections in case
of a failure. For example, in Figure 9.4, if AB is cut, then receiver D must receive connections from
A on the counter-clockwise ring but connections from B and C on the clockwise ring.

The three approaches are illustrated in the figure below. There is no difference between them as far
as line protection is concerned. Also, span protection in the case of equipment failures works the
same way in all the approaches. However span protection in the case of fiber cuts works differently.
Option (1) allows span protection to be used in case of a single fiber cut, whereas options (2) and
(3) do not allow span protection to be used for this case. Therefore, we will pick option (1).

w w
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9.13

(a) Once span protection is invoked, network management must prevent line protection from
being invoked. Likewise, when line protection is invoked, network management must
prevent span protection from being activated.

(b) Network management must allow span protection to be invoked on multiple spans, if
needed.

As with a UPSR, this arrangement can handle multiple failures of fibers in one direction of the ring.
This arrangement can also handle the fiber pairs AD and BC failing simultaneously.

Assume the nodes are located in the ring in the order C, A, H, B, D, that is, nodes A and B are at
distance 1 from the hub H, and nodes C and D are at distance 2. Using shortest paths from each
of the access nodes to the hub node, we need 2 units of working capacity on each of the links A-H
and B-H, and one unit of working capacity on each of the links C-A and D-B, for a total of 6 units
on all the links.

First consider OCh-DPRing. Assume each of the four work paths are assigned distinct
wavelengths. Choose the protect paths as the longer paths on the ring between the access nodes
and the hub. The protect path for each access node can be assigned the same wavelength as the
work path (since all wavelengths are distinct). The work and protect paths from each of the nodes
together consume one unit on every link in the ring, for a total of 4 x 5= 20 units. Thus we need
a protect capacity of 20 — 6 = 14 units.

Next consider OCh-SPRing. We assume that while no wavelength conversion is allowed, the
work and protect paths can have different wavelengths. (If this is not the case, and the work and
protect paths must use the same wavelength, for example, if we have no transponders at the ends
of the lightpaths, then the OCh-SPRing case is the same as the OCh-DPRing case and we would
use one we dedicate one wavelength around the ring for each access node.) Assume that the work
paths A-H and B-H are both assigned the wavelength A1 and the work paths C-A-H and D-B-H
are both assigned the wavelength A». We need to dedicate one wavelength each to protect the traffic
on wavelengths A1 and Ap. Thus we need a total protect capacity of 10 units.

Wavelength conversion would not change the answer in both the cases. Wavelength conversion
or not, with OCh-DPRing each access node needs capacity on every link in the ring. Similarly, even
with wavelength conversion, the work traffic would use 2 units of capacity on some link so that 2
units of protect capacity across the ring would be needed.

Left to the reader.



10.1

10.2

chapter

mmmmmmmsm  \X/DM Network Design

Note that the topology seen by the routers is the lightpath topology of Figure 10.2(b) with a capacity
of x lightpaths on links A-B and B~C, and a capacity of y lightpaths on link A—C. Denote the A-B
traffic by «, the B-C traffic by B, and the A-C traffic by y. The traffic matrices or, equivalently,
values of @, B and y that can be supported depend on the constraints, if any, imposed by routing.

First, assume that all traffic is routed on the direct path in the lightpath topology. This would
be the case if load-balancing on alternate paths is not supported by the IP layer routing protocol.
In this case, the allowed values of «, B8, and y are those that satisfy o < x, 8 < x,and y < y.

If alternate routing is allowed, the answer is much more complicated. Let a1 denote the A-B
traffic routed on the direct path A-B, and ay the A-B traffic routed through C, that is, on the path
A-C-B in the lightpath topology. Similarly, define B1, B2, y1 and y2. Note that the traffic y» is
dropped to the IP router at node B and reinserted by it, whereas the traffic y1 passes through node
B without touching the IP router at node B. Then, the supported values of «, 8, and y are those
for which the following inequalities has a feasible solution.

a1+ B2ty =<x
a2+ pfr+y2<x
a2+ pfo+yr <y

(a) The routing and wavelength assignment is as follows:

Traffic stream Wavelength Path

AB A1, A2, A3 AB
AD A, A2, A3 AD
BC A1, A2 BC
CD A1, A2 CD
BD A3, Mg BCD
BD A BAD
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(b) The minimum total traffic load due to all the connections can be computed by using the
minimum number of hops required for each connection as follows:

Traffic stream Traffic Min. hops Traffic load

AB 3 1 3
AD 3 1 3
BC 2 1 2
BD 3 2 6
CD 2 1 2
Total 16

Since there are only 4 edges to carry this load, the average load per edge is 16/4 = 4,
and the maximum load per edge is therefore at least 4. Thus, at least 4 wavelengths are
required.

(c) Node A needs 3 ADMs, node B 4, node C 2, and node D, 4 ADMs.
(d) Each node would need 4 ADMs.

10.3 Consider any source node. The N — 1 traffic streams from that node to the other nodes, when

10.4

routed on their shortest paths take up a total number of hops of

N-1 N? -1
hodd=2<1+2+3+---+ >=

2 4

for odd N and

N N?
ha,en=2<1+2+3+---+5—1>=7

for even N. The traffic between each pair of nodes is ¢ /(N — 1), and so the average load due to this
traffic on each edge is
hoddﬁN N+ 1t
2N 8

for odd N and

heenygN N +1+ ﬁt
2N B 8
for even N.

Since two adjacent nodes use different paths along the ring, only N/2 nodes use any given edge
on the ring. But any node using this edge routes [7] lightpaths through it and uses [#] different
wavelengths. Thus,

W—Nt
= 511

for even values of N.
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For odd values of N, the node diametrically opposite the hub routes [¢/2] lightpaths in one
direction and [¢/2] lightpaths in the other direction. Therefore,

N -1 t
Nt

for odd values of N.

W =

10.5 For N = 2 we require only 1 wavelength and

W2 = 2—2 + 2 =1
8 4
Suppose
2 N
W(N) = 5 + 7

wavelengths are sufficient for some N > 2, even. Then add 2 more nodes as shown below. Each
of the new nodes uses the shortest path to communicate with the other N nodes and shortest
paths (clockwise or counterclockwise) to communicate with each other. The number of additional
wavelengths needed is % +1.

New
node

N/2
nodes

N/2
nodes

New
node

By the induction hypothesis, the number of wavelengths required is

N2+N+N+l_(N+2)2+N+2N+4—2N—2_(N+2)2+N+2
8 4 2 o 8 4 - 8 4

10.6 We will first solve the problem for the case of 1 lightpath between each pair of nodes. When N = 3,
we require only 1 wavelength and

3?1
8

=1

W(3) =
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Suppose

N2-1
8

W(N) =

wavelengths are sufficient for some N > 3, odd.

Add 2 more nodes as shown below. The routing is the same as in the N-even case and the new
nodes use the shortest path to communicate with each other. This requires NT_l + 1 additional

wavelengths.

New
node

N2 +1 N/2

nodes

New
node

nodes

By the induction hypothesis, the number of wavelengths required is

N2—-1 N-1 N+22-1
A S Gt

8 2 8

When we need [r/(N — 1)] lightpaths between each pair of nodes, the expression above must

be modified to

WMDZ[NZJ(N24>'

10.7 For N even, we have

N N
2[1+2+ -+ (= -1) |+ =
[++ +(2 )}2

N
2 hij =

j=1
(N 1N+N_N2
2 227 4
Thus
g T Yk N2 N+ 1
mn N(N—-1  4&N-1) 4 AN —-1)
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For N odd,
N-1 N -1 N+1
S0y = 2(uver V22 (RS2 (M)
j=1
_ NZ-1
N 4
Therefore,
o Y ON+1
"MTN-1T 4

Consider the double hub architecture shown in the figure below. Traffic from each node is routed
to the nearest hub through lightpaths. Traffc between hubs (where the source node is closer to one
hub, and the destination node to the other) is routed through lightpath setup between them.

Since each node has to route ¢ units of traffic, it sets up sets up [#] lightpaths to the closest hub.
These lightpaths require a total of 2N [t] LTs in the network. We assume the number of nodes
N = 4k. These lightpaths require k[t] wavelengths—each of the k nodes on one side (left or right)
that is closest to a given hub, uses [#] distinct wavelengths. The same set of wavelengths can be
reused in the four quadrants of the ring.

Hub

N/2
nodes

N/2
nodes

Hub

Assume a node is closer to hub 1 than hub 2. Traffic from this node to the 2k nodes that are
closer to hub 2 has to be routed on the lightpaths between the hubs. This traffic amounts to '
for each pair of nodes where one is closer to hub 1, and the other to hub 2. Since there are 4k? such
node pairs, the total traffic that is to be routed between the two hubs is 4k2ﬁ. Assume half this
traffic is routed clockwise and the other half, counterclockwise. This traffic thus requires requires
A72k?>157 LTs, and [2k?55] wavelengths.

Putting all this together, the number of LTs required per node in this architecture is 277 +
% (%2 11, and the number of wavelengths is % ] + (%2 ﬁ]. In comparison, the single hub
architecture requires 2[¢] LTs and % [t] wavelengths. Thus the double hub architecure requires
more LTs but fewer wavelengths than the single hub architecture.
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10.9

10.10

10.11

10.12

10.13

10.14

First, there is a typographical error in the problem statement, where A% should be A%,

Since the traffic is bidirectional, A%¢ = 195,

The objective function changes to >, _; ¢ij - bij, where condition i < j is due to the fact that

j

the lightpaths are bidirectional. The condition ensures that we consider a lightpath only once in
the summation.

The total flow for all pairs (i, j) is Aij = D 4 Af;’, and that A;; <r.

The degree constraints and bidirectional lightpath constraints remain the same. The nonnegativity
and integer constraints remain the same except variable Amax is not considered.

The network of Figure 10.21(a) is much better than that of Figure 10.21(b). Consider a unidirectional
lightpath from B to C. The network of Figure 10.21(b) cannot support it, but (a) can. Note that
there is no way around this problem. If we reverse the directions of wavelengths on the link
between C and the hub, then we cannot support a connection from C to A.

In the multifiber network (A), label the fibers from 1 to P and and wavelengths from 1 to W. In the
single fiber-pair network (B), label wavelengths from 1 to PW. We will associate wavelength (i, w)
in network A (i represents the fiber index and w the wavelength on that fiber) with wavelength
(i — 1)W + w in network B.

Consider a lightpath in network A that uses (i1, w1) on one link and (i2, w1) on the next link.
Note that the wavelength must be the same as there is no conversion in the network. An equivalent
lightpath in network B uses wavelength W(i1 — 1) + w1 and W(i2 — 1) + w1 on the same links.
Note that this is always feasible because of degree P wavelength conversion in network B, which
implies that a wavelength W(i — 1) + w can be converted to any wavelength W % +w on the next
link. Here * denotes any of the P possible values of i — 1. Therefore network B can support any
lightpath supported by network A.

The proof in the reverse direction is similar.

The network has approximately O (n) rows and O (n) columns. Thus D &~ n and M ~ n?. We can
do the routing so that L is a constant. Therefore both (L —1)D + 1 and Lv/M — L + 2 are O(n),
which is the number of wavelengths required, since each node pair requires a separate wavelength
to communicate in this example.

Suppose there are K (x) lightpaths of length > x hops. The average load due to these lightpaths,
say I(x), satisfies

xK(x)

=lx)=L

so that K < LM/x. Assign LM/x separate wavelengths to these lightpaths. Next consider the
lightpaths of length < x — 1 hops. Each of these intersects with at most (L — 1)(x — 1) other such
lightpaths, and so will need at most (L — 1)(x — 1) + 1 additional wavelengths. So we have

W<LM/x+(L-Dx-1+1

for every x. The minimum of the RHS occurs for x = «/LM/(L — 1). For large L, the minimum
occurs for x &~ +/M which corresponds to the case considered in the text.

For a two node network, the algorithm clearly uses only L wavelengths. Consider a network with
n nodes and maximum load L. Consider the (n — 1) node network obtained by deleting node n and
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10.15

10.16

10.17

terminating all lightpaths that would have terminated at node n, at node (n — 1). This network has
load at most L, and by the induction hypothesis the greedy algorithm uses at most L wavelengths
for this network. Now consider the n node network. The lightpaths terminating at node n can
keep the same color that they were assigned in the (n — 1) node network; no conflicts occur since
these lightpaths share both the edge from (n — 2) and (n — 1) and the edge from (n — 1) to n and
no conflicts occur on the edge from (n — 2) to (n — 1). Suppose there are x such lightpaths, which
take up x wavelengths on the edge from n — 2 to n — 1. Then the lightpaths from node (n — 1) to
n are at most L — x in number since the load is L. Therefore the greedy algorithm can assign the
L — x remaining wavelengths to these lightpaths, and thus uses no more than L colors in all.

The above proof holds, except that in the last step, note that any algorithm that choses any available
color from a fixed set of L colors never runs out of a color.

The construction is as follows. Number the nodes in the ring starting at an arbitrary node 0, and
proceeding counterclockwise up to node N — 1. Define the following set of 2L — 2 lightpaths, all
proceeding counter clockwise along the ring between the two nodes listed below:

a1=[0,5la2=[1 5 +1,...ap1=[L-25+L-2,
bl:[%71]5572:[%—f-l,Z],...,bL_l:[% +L-2L-1].

Note that all the a; overlap on edges between nodes L — 2 and %, all the b; overlap on edges
between nodes % + L — 2 and 1, and each a; overlaps with each b;. Thus all of them must be
assigned separate wavelengths. The load can be seen to be L.

Now add an additional lightpath

c=[5-15+L-1].

Note that c overlaps with all the a; and b; and that the load is still L. Therefore 2L — 1 wavelengths
are required to support these 2L — 1 lightpaths.
Note that for the construction to work, we must have

%+L—2§N—lorN>2L—l.

First consider the case when N is odd. Since (N2 — 1)/8 is an integer when N is odd, the fully
optical network of Example 10.4 uses (N? — 1)/8 wavelengths to support this traffic (r = N — 1),
without wavelength conversion. (See Problem 10.6.) Thus (N2 — 1)/8 wavelengths are sufficient
to support this traffic, with or without wavelength conversion, when N is odd. From the solution
to Problem 10.7 (with t = N — 1) and (10.10), the average load on each edge is (N? — 1)/8. Thus
(N? — 1)/8 wavelengths are also necessary in this case, with or without conversion.

Now consider the case when N is even. Using the fully optical network of Example 10.4,
(N? + 2N)/8 wavelengths are sufficient to support this traffic with no wavelength conversion.
From (10.10) with r = N — 1, the average load on each edge is N?/8. Thus [N?/8] wavelengths
are necessary to support this traffic.

Consider the case with full wavelength conversion where N is even. We give a construction
below that has a maximum load of

N? 1

8 2
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when N is a multiple of 4 and

N2

- +1
when N is not a multiple of 4. With full wavelength conversion, these also correspond to the
number of wavelengths that are sufficient to support this traffic. The construction works as
follows. Consider all 1-hop lightpaths between node pairs. These can be supported with a load
of 1 by routing the lightpaths along the shortest path between the nodes. Similarly, for k < N/2,
k-hop lightpaths can be supported with a load of k by routing them along the shortest paths. Thus
the total load due to all lightpaths of length < N/2 is

1.2 N o N2 N
The only remaining lightpaths are the lightpaths between nodes that are diametrically opposite in
the ring, that is, those that are N/2 hops apart in the ring. For these lightpaths we have two choices
of routes. The routing is done as follows. The lightpath that starts at node O is routed clockwise
along the ring. The lightpath that starts at node 1 is routed counter-clockwise, the one that starts
at node 2 is routed clockwise, and so on. The reader can verify that this routing induces a load of

N
—+1
4+

when N is a multiple of 4 and

N+2

4

when N is not a multiple of 4.
Thus considering all the lightpaths, the maximum load of this construction is
N2

—+1
8+

when N is a multiple of 4 and

N? L1
8 2
when N is not a multiple of 4.
Observe therefore, that having wavelength conversion helps us to reduce the number of
wavelengths in this case. The overall results are summarized below:

No conversion Full conversion
Necessary Sufficient Necessary Sufficient
N?-1 N?—1 NZ—1 N?-1
N odd 3 .8 g i 5
N even ’7%—‘ N@—}-% ’V%—‘ %+1,N:4m

%2+%,N:4m+2
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10.18

10.19

10.20

10.21

Consider a 3-node star network with one lightpath between every pair of nodes. The maximum
load L = 2 but %’L = 3 wavelengths are necessary to perform the wavelength assignment. To see
this, observe that each lightpath shares an edge with the other two so that all three lightpaths must
be assigned distinct wavelengths.

Consider a ring network with load L. Cut it at any node, say node Z, to obtain a line network.
The lightpaths in this line network can be colored with W < L wavelengths, since the maximum
load is L. However lightpaths passing through node Z are split into two (sub) lightpaths in the
line network and the two (sub) lightpaths may be assigned different colors. Say there are k such
lightpaths with colors (x1, y1), (x2, ¥2), ..., (xk, yx) assigned to their two parts in the line network.

By using full wavelength conversion at node Z, wavelengths x; can be converted to y; and vice
versa,i = 1,2, ..., k. This allows the network to support all lightpath requests with load L < W.

From Lemma 10.7 we have

N
W(N,L)5L+w<5,L> .

Add dummy nodes to the line network so that N is a power of 2. Then,

N
WN.L) < L—i—W(E,L)

N
= L+L+W<Z,L>
N
< L+L+L+W<§,L>
< (log; N — 1)L + W(2, L).

Since W(2, L) = L, we have
W(N, L) < (log, N)L.

If N is not a power of 2, W(N, L) < [log, N1L.

The algorithm is as follows: Divide the [log, N1L = kL wavelengths into k groups of L
wavelengths each. The nodes are indexed using [log, N1-bit binary numbers, say x1, x2, ... x¢
where k = [log, N]. Given a lightpath from node x = (x1, x2, ...xx) to node y = (y1, y2, - - - Yk),
find the least index i for which x; # y;. Use any available wavelength from group i for this
lightpath. The pseudocode for the algorithm is given below:

for i =1;i <k;i++) if (x; # y;) break;
for (w= (i —1)L; w <iL; w+ +) if w is available, break;
assign w to the lightpath.

Cut the ring network at any node. For lightpaths not passing through the cut node, say node Z,
[log, N1L wavelengths suffice since we can use the online wavelength assignment algorithm on
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10.22

10.23

10.24

the resulting line network. Allocate L additional wavelengths for lightpaths passing through node
Z and assign any available wavelength from this set to a lightpath passing through node Z. We
never run out of wavelengths since the maximum load = L means no more than L lightpaths pass
through node Z.

A
! 1
! 1
! 1
! I
! I
1 b 2
R et >
D
2
) | 2
» < |
3
3 wavelengths 2 wavelengths

In a network using full wavelength conversion, a lightpath request is blocked if there is no free
wavelength on some link in the path. The probability that no wavelength is free on any given link
is 7V, So the probability that there is no blocking on any of the H hops, using the link independent
property, is given by = (1 — 7). Therefore,

Ppe=1-(1—a".
We have
1w\ /H
ﬂnC=1—<1—Pb’/n‘g/) .
For small Pblfnzv (small Pp e and W not large), using (1 — x)" ~ 1 — nx, for small x,

1w
Pb,nc

Tinc =

Also,

mte = (1- (- Aoy )"

Again, using (1 — x)" ~ 1 — nx for small x, for small Py tc, we get

e A Po tc yw
fc —H .

The exact expression and the approximation for mnc are plotted versus the number of wavelengths
W, for various values of P, and number of hops, in the plots below. The approximation consistently
underestimates the utilization so that the lower curve in each plot corresponds to the approximation.
It can be seen that the approximation is accurate only for W < 5 or so, when P, = 10~3. When
P, = 107>, the range of accuracy of the approximation increases to around W < 10.
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10.25

10.26

0.25 0.25 0.25

02 02 | P,=10 02} pP=10"
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0.05 0.05 /0,05 e

The approximation for Pyfc is so accurate for P, < 1073 that the curves for the approximate
and exact expressions are indistinguishable. Hence these curves are not shown here.

The probability that a wavelength is free on link k, given that it is free on links 1,2,...,k — 1, is
given by 1 — 7, by the definition of m,. (It only matters that it is free on k — 1.) Therefore, the
probability that a wavelength A is free on link 1 is 1 — 7,,. The probability that it is free on links
1 and 2 is (1 — m,)%. The probability that it is free on all H links is (1 — 7,)". So the probability
that wavelength A is not free is given by 1 — (1 — 7,,)?. Thus,

Pone = [1-@-m"]"

Gb/s B D E

A 2 1 2

(a) B 1 4 2
C 2 3

D 1

(b) If we route each lightpath along its shortest path, starting from the top left of the matrix
above, and going down row by row, and assigning the lowest possible wavelength to each
lightpath, we get the following assignment:
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Lightpath Wavelength
AB 1
AB
AC
AC
AC
AD
AE
AE
BC
BD
BD
BD
BD
BE
BE
CD
CD
CE
CE
CE
DE

NP, WO RPN DA WDNDR R WDNDRERE OGO

(c) The most heavily loaded link is DE, with a total load of 7, which is also equal to the number
of wavelengths.
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11.2

chapter

e Access Networks

Broadcast-and-select PON, laser transmitter
Received power= —14 — 10log N > —40. Therefore N ~ 400.
Broadcast-and-select PON, LED transmitter
Received power= —31 — 10log N > —40. Therefore N ~ 8.
WDM PON
Same as a broadcast-and-select PON.
WRPON, laser transmitter
Received power= —13— L > —40, where L is the router loss, which depends on N. For N = 64,
L = 12 dB, which is still feasible here.
WRPON, LED spectral slicing
Here the router acts as a spectral slicer. Received power= —31 — 10log(2N) > —40. Therefore
N~ 4.

Total bandwidth required = 20 x 12 = 240 Mb/s. This cannot be supported by a single transmitter.
We could use two wavelengths (2 lasers) at the CO—one at 1.3 and the other at 1.5 um. They
would be combined using a 1.3/1.5 coupler, and sent through the AWG. The AWG, because of its
periodicity, serves as a router for both the wavelengths. Each ONU would have a 1.3/1.5 coupler
to select one of the wavelengths.
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chapter

mmmmmmmm Photonic Packet Switching

Pulse 1 is delayed by every one of the k stages for a total delay of
(T—0) 42T —1) 4+ 2T —1) = @ = 1)(T — 7).

Note that the pulses not delayed by stage j are those for which the binary representation of (i — 1)
has a 1 in the jth bit (counting from right to left, starting from 1). Thus the total delay not
undergone by pulse i is (i — 1)(T — 7). Therefore, pulse i undergoes a delay of

Q—1—i+)(T -1)=2 —iNT - ).

Assume that pulse 1 occurs at time 0, pulse 2 occurs at time 7', pulse i occurs at time (i — 1)7T,
..., at the input. Then, at the output, pulse i occurs at time

(i — DT + @ —iyT —1),
whereas pulse (i — 1) occurs at

(i —2T+ 2 —i+ (T —1).
The difference is

T—(T—-1)=r1.

Therefore, the pulses are T apart at the output.

We can arrange the timing of the pulses such that pulse i is delayed by those stages in which (i — 1)
has a 1 in its binary representation (counting from left to right starting from 1). Then pulse i
undergoes a delay of (i — 1)(T — 7). Thus pulse i occurs at the output at time

(i—-DT+2—DT -0+ -DT—-1)=(3G( DT+ 2 —1(T —1).
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Likewise, pulse i — 1 occurs at the output at time (i — 2)T + (2 — 1)(T — ), and the difference
between the two is T. Note that the switching time required is < t, which is not feasible for
small 7.

12.3 Delaystagei, i =1,2,...k — 1, should be encountered if the binary representation of x has a 1 in
position i, counting from left to right, starting from 1.
Let b1by...by—1 be the binary representation of x. Let bg = 1. Then we have the following
truth table for c:

bi-1 b ¢
1 1 1
0 1 0
1 0 O
0 0 1

Thus ¢; = b;_1 ® b;, where @ denotes the exclusive or (XOR) operation.

12.4 We know that the transfer function of a 3 dB coupler is

ENEw

J2\i 1 ’

If E; denotes the field of the input pulse, then the fields of the clockwise and counterclockwise
pulses can be written as

<l§:c>:%<1%>'

If a phase shift ¢ is introduced between them, then

(&)%)
ECC «/é jEi ’

After the second pass through the coupler,

Ep\_1(1 E; '
Er ) 2\ 1 JE; ’
We have therefore,
1 .
Ep = E(e”P —1E; .

If$ =0, Eg =0. For |Eg| = |Ej|, ¢ =—1or¢ =m.

12.5 m The duration of the header is 80 bits at 1 Gb/s, that is, 80 ns. If the payload duration
must be 90% of the overall packet duration, it must be 9 times the header duration, or
9 x 80 = 720ns. At 100 Gb/s, the payload needs to be 720 x 100 = 72,000 bits, or 9000
bytes, long.
n If the payload size must be limited to 1000 bytes, that is one-ninth, and the same efficiency
maintained, the header must be transmitted 9 times faster, that is at 9 Gb/s.
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» The header duration is 80 ns. The guard time effectively increases the header duration by
1000 ns to 1080 ns. To maintain an efficiency of 90%, the payload duration must be 9
times larger, that is 9720 ns. At 100 Gb/s, the payload is thus 9720 x 100 = 972000 bits,
or 121,500 bytes, long.



